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Efficient removal of diverse organic and inorganic pollutants from wastewater remains a critical challenge.
Although lignocellulose-derived biochar is a green adsorbent, its selectivity and adsorptive capacity are still
limited for large-scale application. As Miscanthus is a dedicated bioenergy crop providing abundant lignin-rich
biomass, this study first extracted lignin fractions from two Miscanthus sacchariflorus accessions (Msa0l and
Msa24) with distinct guaiacyl (G) and p-hydroxyphenyl (H) monomer proportions, and then generated biochar
samples using ZnClz as an activating agent at various temperatures. Among the total of 20 biochar samples
obtained, two optimal biochar samples were obtained at 400°C, a significantly lower temperature relative to the
most chemical-activations processes, but they both exhibited exceptionally high specific surface areas
(>1500 m?/g) with distinct pore architectures, leading to size- and type-selective adsorptions. By comparison,
the Msa01 biochar possessed a relatively smaller average pore size and volume than those of the Msa24 biochar,
enabling superior uptake of the small dye methylene blue (541.9 mg/g), whereas the Msa24 biochar sample
preferentially adsorbed larger organic molecules such as Reactive Blue 19 (1286.1 mg/g) and Tetracycline
(731.9mg/g). Both biochar samples also achieved effective removal of the inorganic contaminant Cr(VI)
(381.2-392.1 mg/g), attributed to their exceptionally high surface areas and pore volumes. Adsorption isotherm
and kinetic analyses indicated multilayer adsorption on the heterogeneous surfaces governed by active site
availability, and molecular dynamics simulations further revealed that adsorption was driven by strong non-
covalent interactions. In addition, two biochar samples showed excellent recyclability, retaining up to 97 % of
initial adsorption capacity after five cycles. This work thus demonstrates a sustainable and energy-efficient
strategy for valorizing lignin-rich agricultural residues into hierarchical porous biochar with tunable
molecular-size selectivity for remediation of multiple pollutants.

1. Introduction

Miscanthus is a high-yielding perennial grass widely recognized as a
promising biomass feedstock due to its short growth cycle, high biomass
productivity, and strong adaptability to marginal lands (Cheng et al.,
2018; Wang et al., 2016). As a typical energy crop, Miscanthus straw has
demonstrated a broad application potential in thermochemical
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conversion, environmental remediation, functional material production,
and carbon material fabrication (Sun et al., 2017). Its lignocellulose is
rich in cellulose and lignin, which are responsible for its favorable
properties in thermochemical conversion into high-quality carbon ma-
terials (Wang et al., 2024a). Unlike the hemicellulose, which de-
composes at relatively low temperatures, the abundant lignin
component possesses a high degree of aromaticity and thermal
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resistance. Consequently, efficient utilization of Miscanthus lignocellu-
lose not only contributes to the valorization of agricultural waste into
industrial bioproducts, but also offers a sustainable and green material
for environmental remediation (An et al., 2025).

Lignin is an aromatic polymer composed of p-hydroxyphenyl (H),
guaiacyl (G), and syringyl (S) units linked by ether (e.g., /~0-4, a-0-4)
and C-C bonds (Ai et al., 2024; Fu et al., 2022; Yu et al., 2025). The
composition and degree of cross-linking among these structural units
directly influence the thermal stability and carbonization behavior of
lignin (Li et al., 2020). Compared to cellulose and hemicellulose, lignin
possesses a higher degree of aromaticity and carbon content, which fa-
cilitates the formation of stable carbon skeletons and higher char yields
during pyrolysis (Li et al., 2024b; Wang et al., 2018). Therefore,
lignin-rich biomass is particularly suitable for the production of
high-performance biochar with large specific surface areas, stable
structures, and abundant aromatic functionalities, which are the critical
factors for effective adsorption and immobilization of organic pollutants
(Egun et al., 2025).

Biochar, a carbonaceous material generated by pyrolyzing biomass
under oxygen-limited conditions, is characterized by high porosity,
abundant surface functional groups, excellent thermal stability, and
high tunability (Hu et al., 2023; Liu et al., 2023; Zhang et al., 2023b). In
recent years, it has attracted considerable attention in water pollution
remediation (Laishram et al., 2025). For improving biochar adsorption
performance, chemical activation is widely employed as an effective
modification strategy (Zhou et al., 2024). Among various activating
agents, ZnClz, a Lewis acid-type chemical, stands out for its ability to
promote biomass dehydration, condensation, and aromatization (Ali
et al., 2025). Although ZnCl: activation is more compatible and effective
in the thermal-chemical conversions of lignocellulose feedstocks rich in
lignin compared to alkaline (e.g., KOH, NaOH) and acidic (e.g., HsPO4)
activation methods (Memetova et al., 2022; Serra-Parareda et al., 2020),
the specific influence of the intrinsic lignin monomer ratio on the pore
evolution mechanism during ZnCl> activation remains poorly
understood.

The growing release of hazardous pollutants such as major industrial
dyes (e.g., methylene blue/MB; reactive blue/RB), antibiotics (tetracy-
cline/TC), and heavy metals (Cd, Pb, Cr) has posed severe challenges to
environmental remediation (Wang et al., 2025¢). These contaminants
are persistently toxic, poorly biodegradable or non-degradable, and are
commonly discharged in effluents from textile, pharmaceutical, agri-
cultural, and electroplating industries, posing significant threats to
ecosystems and human health (Patel et al., 2024). Compared to tradi-
tional water treatments, the biochar-based adsorption offers advantages
such as high efficiency, cost-effectiveness, operational simplicity, and
renewability, presenting a promising approach for organic and inor-
ganic contaminant removal (Singh and Maiti, 2024).

In this study, two types of lignin-rich Miscanthus feedstocks (Msa01l
and Msa24) were employed to produce porous biochar via a ZnCle-
assisted activation strategy at exceptionally low temperatures. The role
of ZnCl: activation in modulating the biochar structure was elucidated,
and the adsorption performance of the resulting biochar toward typical
organic dyes (MB and RB), tetracycline (TC) and heavy metal (Cr(VI))
was systematically evaluated by assessing the impact of biomass source
on the structural characteristics and adsorption behavior. This work thus
provides new insights into lignin-based carbon materials and offers a
feasible strategy for the high-value utilization of agricultural residues
and the effective removal of industrial organic and inorganic pollutants.

2. Materials and methods
2.1. Collection of biomass samples
The general procedure of major experiments performed in this study

was illustrated in Fig. S1. Two Miscanthus (Msa01 and Msa24) accessions
were selected from a germplasm resource and cultivated under uniform
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agronomic conditions in the Experimental Field of Huazhong Agricul-
tural University (Wuhan, China) (Li et al., 2016). The well-dried biomass
was milled using a QE-300 grinder, passed through a 40-mesh sieve, and
the resulting powder was stored until use.

2.2. Wall polymers extraction and determination

Plant cell wall fractionation was performed as described previously
(Liu et al.,, 2021a). An ultraviolet-visible (UV-VIS) spectrometer
(V-1100D; Shanghai MAPADA Instruments Co.) was used for hexose,
pentose, and uronic acid assays, as previously described (Wang et al.,
2024b, 2025d). The total lignin content was determined using a
two-step acid hydrolysis method according to the Laboratory Analytical
Procedure of the National Renewable Energy Laboratory. All assays
were performance in independent triplicates (Yu et al., 2022).

2.3. Lignin extraction

Two lignin-extraction methods were employed in this study by using
alkaline and acid solutions, respectively. For alkaline extraction, straw
powder was mixed with a 15% (w/w) sodium hydroxide solution at a
solid-to-liquid ratio of 1:15 and heated at 90 °C under continuous stir-
ring for 4 h. After extraction, the resulting supernatant was adjusted to
PH 2 using 20 % sulfuric acid to precipitate the lignin. The precipitate
was then washed with deionized water until neutral and dried to a
constant weight (Zhang et al., 2023a). For acid extraction, straw powder
was initially mixed with 67 % sulfuric acid at a solid-to-liquid ratio of
1:10 and shaken at room temperature for 1.5 h. The mixture was washed
to neutrality, and the solid residue was subjected to a second hydrolysis
step using 2.88 % sulfuric acid at 120 °C for 1 h at a solid-to-liquid ratio
of 1:20. The final residue was thoroughly washed to remove residual
acid and dried to a constant weight as previously described (He et al.,
2022).

2.4. Determination of lignin monomer content

Monolignols were extracted by Nitrobenzene Oxidation as described
(Li et al., 2014). Standard H-, G- and S-monolignols were purchased
from Sinopharm Chemical Reagent Co., Ltd. A Kro-mat Universal C18
column (4.6 mm x 250 mm, 5 pm) was used for HPLC analysis using a
SHIMADZU LC-20A machine with a UV-detector at 280 nm. CH3OH:
H,0:HAc (16:63:1, v/v/v) was used as mobile phase (flow rate:
1.1 mL/min), and the injection volume was 20 p as described previously
(Zhang et al., 2021b).

2.5. Biochar preparation

Lignin and ZnCl= were first mixed at a mass ratio of 1:2 and subjected
to carbonization at temperatures ranging from 300 °C to 800 °C (with
100 °C increments) to identify the optimal pyrolysis temperature for
biochar preparation at 400 °C. Subsequently, a series of activation ratios
(lignin: ZnCl> = 1:1, 1:2, 1:3, 1:4, 1:5, w/w) were conducted at the
selected temperature (400 °C) to optimize the activation conditions. All
carbonization experiments were conducted in a tube furnace (OTF-
1200X, Hefei Kejing Materials Technology CO., LTD) under a nitrogen
flow. The samples were heated at a rate of 5°C/min to the designated
temperature and maintained for 2 h to ensure complete carbonization.
Afterwards, the furnace was cooled to 300 °C at a rate of 10 °C/min and
then allowed to cool naturally to room temperature. The obtained bio-
char was collected and dispersed in 200 mL of distilled water, stirred for
6 h, and washed repeatedly with distilled water until the filtrate reached
pH 7.0. Finally, the washed biochar was dried at 60 °C to constant
weight and stored until use (Li et al., 2024c).
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2.6. Analysis of organic and inorganic pollution adsorption with biochar

Methylene Blue (MB, CAS: 61-73-4), Reactive Blue 19 (RB, CAS:
2580-78-1), tetracycline (TC, CAS: 64-75-5) solutions were prepared in
ultrapure water at room temperature (25 + 1 °C). For each adsorption
test, 20 mL of solution was mixed with 20 mg of biochar in a conical flask
and shaken at 150 rpm for 6 h in a thermostatic shaker. The suspensions
were filtered through 0.45 pm membrane filters to remove biochar
particles. Residual dye concentrations were determined using a UV-Vis
spectrophotometer (V1100D, Shanghai MAPADA Instrument Co., Ltd.)
at 664nm (MB), 595nm (RB), and 360nm (TC). All assays were
completed at independent triplicates. For Cr(VI) adsorption, a stock
solution (0.1 g/L) was prepared by dissolving 0.2829 g KoCr20- (CAS:
7778-50-9) (dried at 120 °C for 2h) in 1000 mL distilled water.
Working standards (1.0 and 5.0 pg/mL) were freshly prepared by dilu-
tion. The color reagent was prepared by dissolving 0.2g diphe-
nylcarbazide in 50 mL acetone and diluting to 100 mL with distilled
water, and stored in the dark. For calibration, 50 mL of standard solution
was mixed with 0.5 mL H2S0a4 (1:1, v/v), 0.5mL HsPOa4 (1:1, v/v), and
2.0 mL color reagent. After 10 min, absorbance was recorded at 540 nm
using distilled water as the blank. All assays were performance in in-
dependent triplicates (Wang et al., 2025¢). The adsorption capacity of
the biochar (qe, mg/g) was calculated using the following equation:

(Co —Ce) xV

qe = M (€8]

Where Cy (mg/L) and C, (mg/L) indicate the concentration of MB or RB
at initial and equilibrium. The volume of the solution is expressed as V
(L) and the mass of the sample is expressed as M (mg) (Lima et al., 2019,
2021; Liu and Liu, 2008).The correlation between adsorption capacity
(ge, mg/g) and the concentration of MB, RB (C,, mg/L) at equilibrium
was modeled using three isotherms. The Langmuir isothermal equation
is given below:

K.,C
R

+ KegCe @

Among them, gpqy refers to the maximum adsorption capacity (mg/
g), Keq represents the Langmuir isothermal constant, refereeing the
adsorption capacity of biochar for MB or RB (Liu and Liu, 2008). The
Freundlich isotherm equation is stated as follow:

ge = KF C;/nF (3)

Where, Kr is the Freundlich isotherm constant, and 1/n is the hetero-
geneity factor (Lima et al., 2019).
The equation of Temkin model is given as follow:

qe = %-LH(KTCJ @
Where, Kt (L/mol) refers to the equilibrium constant, b (J/mol) is the
Temkin constant related to adsorption heat, R is the universal gas con-
stant, and T is the absolute temperature (K) (Fan et al., 2024a). The
kinetics models were applied to predict the relationship between
adsorption capacity at equilibrium (g, mg/g) and adsorption for t hours
(qt, mg/g). The pseudo 1st order model (Eq. 5) and pseudo 2nd order
model (Eq. 6) are presented as follows:

o /

[/qt[ = k1 (qe — qv) )
d

% = k/2(qe - q[)z (6)

Where k; and k, are the pseudo 1st order and pseudo 2nd order con-
stants, respectively (Lima et al., 2021). The Weber-Morris intraparticle
diffusion model is stated as:
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g = kpt** +C )

Where, kj, is intraparticle diffusion apparent adsorption rate constant, C
is a constant related to the boundary layer thickness (Lima et al., 2019).

2.7. Adsorbent recycling detection

The biochar reusability was assessed through successive adsorp-
tion—desorption cycles. After each adsorption experiment, the spent
biochar was washed with 40 mL of 95 % ethanol and shaken at 150 rpm
and 25 °C for 1 h to desorb organic dye. The ethanol solution was
replaced every hour until the dye was completely desorbed, as deter-
mined by the absence of color in the ethanol wash. The adsorp-
tion—desorption cycle was repeated five times. All experiments were
performed in triplicate to ensure statistical reliability (Mutabazi et al.,
2024).

2.8. Reutilization of the activating agent

To recover the ZnCl- activating agent, 100 mL of 10 % hydrochloric
acid (HCI) solution was added to the used biochar in a 250 mL Erlen-
meyer flask. The mixture was shaken at room temperature for 1 h and
then filtered to collect the supernatant containing Zn** ions. Subse-
quently, 2 g lignin was added to the filtrate, and the mixture was
magnetically stirred for 6 h. The resulting suspension was oven-dried at
60 °C to obtain lignin impregnated with reused ZnClz, which was then
used for the next round of biochar preparation. All experiments were
performed in triplicate (De Smedt et al., 2025).

2.9. Characterization of lignin and biochar samples

The physicochemical properties of lignin and biochar samples were
systematically assessed using various analytical techniques. Specific
surface area and pore structure were determined by nitrogen adsorp-
tion—desorption isotherms using the Brunauer-Emmett-Teller (BET)
method (ASAP 2460, Micromeritics, USA). Surface elemental composi-
tion and chemical states were analyzed by X-ray photoelectron spec-
troscopy (XPS, Thermo Scientific ESCALAB Xi+). Surface morphology
was observed via scanning electron microscopy (SEM, ZEISS, Germany).
Structural features were characterized by Raman spectroscopy
(ATR8300 Series), while crystalline phases were identified using X-ray
diffraction (XRD, FRINGE CLASS). Thermal stability was examined
through thermogravimetric analysis (TGA, NETZSCH STA 2500).
Elemental composition was determined using an elemental analyzer
(EMA502), and functional groups were identified by Fourier-transform
infrared spectroscopy (FTIR, Nicolet iS10, Thermo Fisher Scientific,
USA).

2.10. Two-dimensional correlation spectroscopy (2D-COS) analysis

The correlated infrared spectra of 2D-PCIS are divided into syn-
chronous ® (v1, vz) and asynchronous y (v, v2), in which vs and v,
represent the consistency of the intensity of the two Raman peaks when
subjected to external perturbations, respectively. The asynchronous 2D
correlation intensities were used to account for the difference in the
order or rate of change in the intensity of the two Raman peaks (v+ and
vz) while subjected to external perturbations. By combining synchronous
and asynchronous spectral analysis, the relative change priority of v+ and
vz was determined, and the detailed determination method is based on
the Noda rule (Yang et al., 2024).

2.11. Molecular dynamic simulation

The biochar model was constructed in Gaussian09/GaussView soft-
ware based on the elemental composition obtained from an elemental
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analyzer. The chemical structures of RB and MB dye molecules were
downloaded and modified from the chemical structure database Pub-
Chem (https://pubchem.ncbi.nlm.nih.gov/). Molecular dynamics sim-
ulations were performed by the GROMACS package (2019.6 version)
(Abraham et al., 2015). Leap-frog algorithm was used to solve Newton's
equations of motion with a time step of 2 fs. Hydrogen-involved covalent
bonds were constrained throughout the ensemble and production runs
with the LINCS algorithm, which allowed motion with a time step of 2 fs
for the leap-frog algorithm to solve the Newton’s equations (Hess et al.,
1997). A grid-based neighbor searching algorithm was used with a
0.8 nm cutoff for both short-range Coulombic and van der Waals in-
teractions. Long-range electrostatics were treated by the Particle Mesh
Ewald (PME) method. A velocity-rescale thermostat was used to regulate
the temperature at 300 K with a time constant of 0.5 ps (Bussi et al.,
2007), and isotropic pressure coupling was controlled at 1.0 bar using
Berendsen barostat, with a time constant of 1.0 ps and compressibility of
4.5 x 10° bar ! (Berendsen et al., 1984). Periodic boundary conditions
were applied in all three dimensions. Box sizes were set as a box of
2 x 2.3 x 6.2 nm°. SPC216 water model was used to solvate the simu-
lation boxes (Mark and Nilsson, 2001). Steepest descent minimization
algorithm were used to the system. The system was first subjected to
NVT equilibration for 5 nanoseconds (ns), followed by 5 ns of NPT
equilibration, and then a 20 ns molecular dynamics simulation was
performed in an aqueous environment, and the 20 ns was used for sta-
tistical analysis using GROMACS tools. Molecular images in this work
were rendered by VMD 1.9.3 (Humphrey et al., 1996).

2.12. Statistical analysis

The line graph, histogram, and for the best-fit curve were plotted
using the Origin software (OriginLab, USA). Student's t-test and analysis
of variance (ANOVA) were performed using the SPSS 23 software (IBM,
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USA).

3. Results and discussions
3.1. High-performance biochar via ZnCl> activation at low temperature

Two representative Miscanthus accessions (Msa0l and Msa24) were
selected from the previously established Miscanthus germplasm re-
sources (Fig. S2). Based on chemical analyses, two Miscanthus accessions
showed similar cell wall compositions including similar levels of four
major polymers (cellulose, lignin, hemicellulose, pectin) (Fig. S2,
Fig. 1A), but different G- and H-monomers proportions were detected
between the two accessions (Fig. 1B). In particular, the Msa0O1 lignin
contained 35.4 % more G-monomer and 20.5% less H-monomer
compared to the Msa24 one, indicating that two Miscanthus accessions
could provide the desirable lignin substrates distinctive in their G- and
H-monomers proportions. With respect to two Miscanthus accessions
containing distinct lignin compositions, this study employed classic acid
hydrolysis (H*, Klason method) and alkaline extraction (OH-, NaOH) to
extract lignin substrates, respectively. And then performed ZnClz-acti-
vated thermochemical conversions for biochar production at three
temperatures (400 °C, 600 °C, 800 °C) (Fig. 1C). As a comparison, the
three biochar samples generated from alkali-extracted lignin substrate
showed consistently higher MB adsorption capacities than those of the
acid-extracted counterparts, with an average increase in adsorption
capacity ranging from 32.1 % to 74.3 % (Fig. 1D & E), suggesting that
OH- lignin may contain more functional groups favorable for in-
teractions with ZnCl> during activation. Notably, the ZnClz-activated
biochar prepared at 400 °C exhibited the highest MB adsorption capacity
among the previously-reported biochar samples, including highly
adsorptive materials generated using other chemical activations at
higher temperatures (Ahmed et al., 2019; Chen et al., 2019; De
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Fig. 1. Lignin extraction and biochar preparation for methylene blue (MB) adsorption using mature straws of two Miscanthus accessions (Msa01, Msa24). (A) Total
lignin content; (B) Monolignol composition; (C) Schematic illustration of lignin extraction for biochar generation; (D) (E)Adsorption capacity of ZnClz-activated
biochar prepared at three temperatures; Data as means + SD (n = 3) with Student’s t-test as significant differences between Msa0Ol and Msa24 samples at **p < 0.01
or *p < 0.05. Adsorption conditions: T (temperature) = 25 °C, dosage = 1.0 g/L, t (time) = 6 h.
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Benedetto et al., 2020; Du et al., 2017; Fan et al., 2025; Jahani et al.,
2023; Liu et al., 2021b; Lv et al., 2020; Mbarki et al., 2022; Sun et al.,
2022; Wang et al., 2025a, 2025c; Zhang et al., 2022). To further validate
previous reports, this study also prepared the KOH-activated biochar
under three temperatures, and two biochar samples generated at 400 °C
had the lowest MB adsorption capacities among all six biochar samples
(Fig. $3), which were by 5.4-fold (Msa01) and 16.7-fold (Msa24) lower
relative to the MB adsorption capacities of the ZnCl>-activated biochar
samples at 400 °C. In addition, all biochar samples prepared from Msa01
accession maintained consistently higher MB adsorption capacities than
those of Msa24, which should be mainly due to the distinct G- and
H-monomers proportions of lignin substrates between two Miscanthus
accessions. Taken together, the combination of NaOH extraction and
ZnClz activation at 400 °C emerged as the most effective approach, of-
fering a low-energy and high-efficiency route to fabricate
high-performance adsorbents. It also suggests that the adsorption per-
formance of lignin-derived biochar should be determined by a syner-
gistic interplay among biomass type, lignin extraction method, and
activation chemical.

3.2. Dynamic ZnCl, activations for diverse biochar assembly and
performances

To understand the high-performance biochar production via ZnCl>
activation at low temperature, a total of 20 biochar samples were pre-
pared by performing pyrolysis of alkali-extracted lignin at six temper-
atures (300 °C-800 °C) and ZnCl- activation at six dosages (Fig. 2A & B).
As a result, the optimal biochar samples of two Miscanthus accessions
were identified by ZnClz activation with lignin substrates (ZnClz: lignin
at 2: 1) at 400 °C, and they exhibited the MB adsorptive capacities at
565.5 mg/g and 461.3 mg/g, respectively. XRD profiling revealed that
ZnCl. was gradually converted into ZnO during pyrolysis, and the in-
tensities of ZnO characteristic peaks were increased with rising pyrolysis
temperatures (Fig. 2C & D). While a moderate amount of ZnO facilitates
the pore formation in biochar, excessive ZnO may block pore channels to
reduce the surface area and porosity, thus impairing adsorption per-
formance (Xiang et al., 2025). Raman spectroscopic profiling showed a
decreasing Ip/Ig ratio with increasing pyrolysis temperature, suggesting
progressive graphitization and increased structural ordering (Fig. S4).
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Two-dimensional correlation Raman spectroscopy (2D-COS) further
probed the thermally induced structural transitions of the biochar
samples (Fig. 2E-H; Fig. S5). For the Msa01l biochar sample, the syn-
chronous and asynchronous cross-peaks (1350 cm™, 1580 cm™') were
positive for a sequential and cooperative transformation, resulting in
disordered structures (D-band) responding earlier than the graphitic
domains (G-band). In contrast, the Msa24 biochar sample exhibited a
positive synchronous, but negative or negligible asynchronous
cross-peak for a simultaneous and more homogeneous response of D-
and G- bands to external perturbation, which accounted for a more or-
dered and stable carbon framework formed at higher pyrolysis tem-
peratures. In addition, polar oxygen-containing functional groups (e.g.,
-OH, -COOH, -C—=0) were retained to a greater extent at lower pyrolysis
temperatures, which likely enhanced adsorption through hydrogen
bonding, electrostatic interactions or complexation with dye molecules
(Saha et al., 2019). As the pyrolysis temperatures were increasing, those
functional groups were progressively removed due to carbon structure
condensation and graphitization, resulting in a more hydrophobic sur-
face and fewer active sites accountable for reduced adsorption capacity
(Han et al., 2022). As the lignin-to-ZnCl: ratio increased from 1:1-1:5,
the adsorption capacity first increased and then declined (Fig. 2B).
Raman spectroscopy (Fig. S5) showed that the Ip/Ig ratio followed a
similar trend, rising initially and then decreasing, suggesting that
moderate ZnCl. addition could promote the development of disordered
carbon structures and subsequently reorganize at higher loading. As
2D-COS analysis provides a deep insight into structural evolution
(Fig. S5), the asynchronous spectral changes (with the G band
responding earlier) thus revealed that the graphitic domains were pro-
gressively disrupted and converted into defect-rich structures during
activation. These induced defects and disordered regions could act as
primary “attack sites” for ZnClz etching, and the defect-driven activation
should directly facilitate the intensive development of pores, thereby
creating exceptionally high specific surface area (Bergna et al., 2022). In
detail, the G-rich precursor (Msa01) possessed free C5 positions on the
aromatic ring, which facilitated the formation of condensed C-C linkages
during carbonization for a rigid carbon framework abundant in struc-
tural defects. Meanwhile, ZnCl, preferentially attacked these defect re-
gions, creating extensive porosity and resulting in the superior specific
surface area as observed in the Msa0Ol sample. By contrast, the S-rich
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precursor (Msa24) contained methoxy groups that sterically hinder C-C
cross-linking, which resulted in a more ordered and stable graphitic
arrangement to make the carbon matrix more resistant to chemical
etching, thereby limiting the development of porosity compared to the
G-rich counterpart. Therefore, the distinct spectral behaviors of Msa01
and Msa24 samples can be attributed to their intrinsic molecular dif-
ferences. XRD profiling confirmed that the proportion of ZnCl. signifi-
cantly affected the crystalline structure and phase composition of the
resulting biochar samples (Fig. S6). Hence, an appropriate amount of
ZnCl: facilitates pore formation and increases specific surface area,
thereby enhancing adsorption performance. In contrast, excessive ZnClz
may lead to structural collapse or pore blockage, ultimately reducing the
number of accessible adsorption sites (Lin et al., 2025).

3.3. Characteristic carbon structures for high porosity and thermal
stability

To test the high-performance biochar samples, we initially observed
their morphologies under SEM, and two optimal biochar samples
exhibited a typically porous and sheet-like structure (Fig. 3A). Specif-
ically, the Msa01 biochar displayed an open and loosely stacked lamellar
architecture with a rough surface, abundant fissures and well-developed
hierarchical porosity, which was likely attributed to the G-rich lignin
precursor as the G-monomer contains one methoxy group that favors
linear polymerization and rigid carbon sheet formation during carbon-
ization. By contrast, the Msa24 biochar showed a denser surface with
localized aggregation and particulate attachments responsible for fewer
visible pores, which may be mainly due to its relatively high S- and H-
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two optimal biochar samples with different adsorption behaviors. For
example, the open lamellar carbon structure of the Msa0Ol sample is
favorable for small molecule diffusion, whereas the compact carbon
matrix of Msa24 sample may enhance n-n stacking and
hydrogen-bonding interactions with large-molecule dye. Randomized
Raman spectroscopy across multiple regions showed that both biochar
samples were of similar Ip/Ig ratios ranging from 0.68 to 0.74, with low
coefficients of variation (3.4 %, 2.3 % CV) (Fig. 3B), indicating a uni-
form graphitic disorder across the carbon matrix. Nitrogen adsorp-
tion-desorption isotherms presented well-defined hysteresis loops
indicative of mesoporous structures in two biochar samples (Fig. 3C). By
comparison, the Msa01 biochar exhibited a higher specific surface area
(1558.4 m?/g) and smaller average pore size (2.30 nm), whereas the
Msa24 biochar showed slightly lower surface area (1526.8 m?/g) and
larger average pore diameter (2.40 nm) with relatively increased total
pore volume (0.915 cm?/g) (Fig. 3D, Table 1). The results suggested that
the Msa01 biochar may offer more active adsorption sites and the Msa24
biochar could accommodate large-molecule dye via facilitated diffusion.
Thermal gravimetric analysis indicated that two biochar samples were
of excellent thermal stability with carbon yields exceeding 79.0 %
(Fig. 3E). Particularly, the Msa24 biochar had slightly higher residual
mass (79.3 %), consistent with its more compact carbon structure

Table 1
BET apparent surface area and porosity of two optimal ZnClz-activated biochar
samples.

Pore Volume (cm3/g)

Sample Surface area (m2/g) Pore Size (nm)
monomer levels for a compact and less porous carbon matrix (Li and Shi, Vtotal ~ Vmicro ~ Vmeso
2023). Despite identical ZnCl. activation conditions, the distinct Msa0l  1558.4 0.897  0.189 0.708  2.30
monomeric proportions of the two Miscanthus accessions determined Msa24  1526.8 0.915  0.192 0.723 2.40
their carbonization pathways and microstructural evolution, resulting in
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Fig. 3. Characterization of porosity and of thermal stability of the biochar samples as described in Fig. 2. (A) Scanning electron microscopy (SEM) images of two
optimal biochar samples prepared by 400 °C and 1:2 lignin-ZnCl, ratio; (B) Raman spectra data collected from 25 randomly selected points within a representative
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size distribution curves, Sppr: Surface area; (E, F) Thermogravimetric (TG) and derivative thermogravimetric (DTG) curves.
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observed under SEM. The DTG curves further revealed that two biochar
samples had the maximum weight loss rate near 177 °C, with Msa01
decreasing from 95.9 % to 94.6 % and Msa24 from 95.1 % to 93.9 %
(Fig. 3F).

Moreover, the chemical composition and surface functionalities of
the biochar samples characterized by elemental analysis and XPS
profiling (Table 2). As a result, the Msa01 biochar had a slightly higher
carbon content and lower oxygen content than the Msa24 did. The XPS
spectra exhibited the presence of C, O, and Zn in both biochar samples,
but the Msa24 sample had relatively higher O and Zn contents (Fig. 4),
indicative of a more intense oxidative activation and Zn incorporation.
High-resolution C 1 s spectra showed major peaks at 284.8 eV (C-C),
286.3 eV (C-0-C), and ~288.8 eV (0-C=O0) (Fig. 4, Table S1), and the
Msa24 biochar displayed a higher proportion of ether (C-O-C) linkages,
likely due to ZnCl.-mediated molecular rearrangement and condensa-
tion reactions. The O 1 s spectra showed strong C-O and O—C-O signals,
confirming the enrichment of oxygenated functional groups (Fig. 4), and
the Zn 2p spectra exhibited characteristic peaks at ~1022 eV (Zn 2pa/2)
and ~1045 eV (Zn 2p+/2), corresponding to the Zn?* species occurring in
Zn-0 bonding environments and residual ZnCl» (Fig. 4). It suggested that
Zn** was partially embedded into the carbon matrix and potentially
contributing to structural stabilization. In addition, the XRD patterns
revealed diffraction signals corresponding to both ZnO (31.65°, 34.38°,
36.00°, 47.59°, 56.60°, 62.87°) and unreacted ZnCl. (27.0°) in two
optimal biochar samples (Fig. 4, Fig. S7), indicating the incomplete
transformation of ZnCl. during pyrolysis. These observations suggest
that the activation process likely involved the following reactions:

Lignin (CxHyO,) + ZnCly + 3Hy0 — CyHy 60, 3 + ZnOCly-2H,0 + 2HCI
(8)

Zn30Cly-2H50 — ZnCly + ZnO + 2H20 9

Importantly, these characterizations directly supported the proposed
adsorption mechanisms: (1) The graphitic structure by XRD assay should
facilitate n—n stacking interactions with aromatic dyes; (2) The oxygen-
containing groups (C-O, C=0) identified by XPS analysis could not only
act as electron donors for the reduction of heavy metal ions, but should
also serve as active sites for hydrogen bonding with organic pollutants.

3.4. Selective maximum adsorption of two optimal biochar

To evaluate the adsorption performance, the two optimal biochar
samples were applied to adsorb four distinct industrial pollutants (MB,
RB, TC, and Cr(VI)) (Fig. 5A). Adsorption isotherms were conducted
under varying initial concentrations (MB: 400-1200 mg/L; RB:
100-2500 mg/L; TC: 200-1000 mg/L; Cr: 100-500 mg/L). The results
showed that the Msa0l biochar exhibited consistently higher MB
adsorption capacities than the Msa24 did (Fig. 5B), whereas the Msa24
biochar had significantly higher RB adsorptions (Fig. 5C). Given that
Msa0l biochar possessed smaller pore sizes and the Msa24 biochar
consisted of a high proportion of mesopores, it should explain why the
Msa0O1l biochar is more favorable for the adsorption with relatively-
smaller-molecule MB (~1.43 nm) and the Msa24 biochar is more
effective for large-molecule RB (2-3 nm). Furthermore, Langmuir,
Freundlich, and Temkin isotherm models were applied to clarify two
optimal biochar adsorptions with MB and RB (Fig. S8, Table 3). For MB
and TC, the determination coefficients (R?) of the Freundlich model
were generally higher than those of the Langmuir model, suggesting that

Table 2
Elemental composition of two optimal ZnClz-activated biochar samples.

Weight percent (wt%)

Sample

H o N S
Msa01 69.0 2.54 9.08 0.417 0.989
Msa24 66.9 2.41 10.5 0.383 0.775
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the adsorption primarily occurs on a heterogeneous surface involving
multilayer adsorption. In terms of RB adsorption, the Msa0l sample
followed the Freundlich model (R? > 0.83), whereas the Msa24 biochar
exhibited a better fit to the Langmuir model R? = 0.989), indicating
monolayer coverage for this specific system. Moreover, the Msa01 bio-
char showed a higher affinity for the small-molecule MB (541.9 mg/g)
and TC (731.9 mg/g), whereas the Msa24 biochar achieved a remark-
ably high capacity for the large-molecule RB (1286.1 mg/g), which was
substantially higher than that of Msa0Ol (810.1 mg/g). The findings
confirmed that MsaOl was more suitable for removing smaller pollut-
ants, whereas Msa24 effectively accommodated larger dye molecules.
For heavy metal Cr(VI) adsorption, both biochar samples demonstrated
high removal efficiencies with capacities ranging from 381.2 mg/g to
392.1 mg/g (Fig. 5E, Table 4). As the exceptionally high specific surface
areas (> 1500 mZ/g) could provide abundant active sites, the removal
mechanism should be primarily governed by chemical interactions
rather than simple pore filling. Specifically, the process involves the
electrostatic attraction between the positively charged biochar surface
and anionic Cr(VI). Because electron-rich functional groups on the
biochar could reduce the highly toxic Cr(VI) to Cr(IlI), an adsorption-
coupled reduction mechanism was likely involved. Furthermore, this
study compared the adsorption performances of two optimal biochar
samples with those of other biochar-based adsorbents as previously re-
ported (Tables 4-7). (Ahmed et al., 2019; Chen et al., 2019; De Bene-
detto et al., 2020; Du et al., 2017; Fan et al., 2024b, 2025; Jahani et al.,
2023; Ji, 2025; Jia et al., 2021; Li et al., 2024a; Liu et al., 2021b; Luo
et al., 2023; Lv et al., 2020; Mbarki et al., 2022; Mei et al., 2021; Sun
et al., 2022; Wang et al., 2025a, 2025b, 2025c; Xie et al., 2021; Zhang
et al., 2021a, 2022; Zhao et al., 2020, 2024). Notably, both Msa01 and
Msa24 biochar samples respectively achieved the highest adsorption
capacities for MB/RB/TC/Cr(VI) among all biochar samples presented,
which attributed to the larger surface areas of the two optimal biochar
samples examined. More importantly, other biochar samples have been
prepared under higher temperatures ranging from 500 °C to 900 °C, and
only one biochar sample (derived from corncob lignin via MnSO4 acti-
vation at 500 °C) exhibited a markedly lower MB adsorption capacity
(Table 4). Thus, the two ZnCl>-activated biochar samples at low tem-
perature not only presented the highest dye adsorption capacities, but
they also offered the advantages in terms of lower energy input and
more selective dye removal. Overall, these findings highlight that the
adsorption selectivity of biochar is strongly governed by their pore ar-
chitecture, where narrower pore channels facilitate the uptake of
small-molecule dyes (e.g., MB), larger pore size and volume enhance
adsorption of large-molecule organics (e.g., RB and TC), and the com-
bination of high surface area and pore volume contributes to the effi-
cient removal of heavy metals (e.g., Cr(VD)).

3.5. Dye adsorption kinetics and interactive mechanism

Adsorption kinetics were analyzed to elucidate the dye adsorption
rates and mechanisms of the two optimal biochar samples (Fig. 6). For
MB adsorption, both biochar samples exhibited rapid adsorption
behavior to reach the equilibrium within 120 min, with a distinct fast
uptake phase in the first 20 min. The Msa01 biochar maintained a higher
adsorption capacity than Msa24 did, consistent with the results
described above. For RB adsorption, the biochar samples required a
longer equilibrium time of 300 min, and the Msa24 biochar exhibited a
greater uptake capacity, validating its superiority in adsorbing large-
molecule dye. Kinetic data were fitted to pseudo-first-order, pseudo-
second-order, and intraparticle diffusion models (Fig. 6B-E). The
experimental data for MB and RB adsorption on both biochar samples
fitted well with the pseudo-second-order models with high R? values
(Table S2), suggesting that the adsorption rate was likely controlled by
the availability of active sites rather than solely by diffusion (Fig. 6E,
Table S3). The decreasing slope in each stage confirms the significance
of intraparticle diffusion in governing the overall kinetics, consistent
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Table 3
Parameters of isothermal adsorption models of two optimal ZnClz-activated biochar samples.
Langmuir Freundlich Temkin
Sample Pollution S
Gmax (Mg/g) b (L/mg) R Kr 1/n R?q45 b(J/mol) k¢(L/mol) R?q4;
Msa01 MB 541.9 0.204 0.621 283.0 0.110 0.923 50.3 0.164 0.889
Msa24 451.1 0.357 0.788 322.0 0.055 0.982 109.3 1.250 0.975
Msa01 RB 810.1 0.171 0.748 270.5 0.162 0.835 27.8 0.010 0.825
Msa24 1286.1 0.136 0.989 417.0 0.172 0.803 15.3 0.005 0.896
Msa01 T 731.9 0.006 0.941 31.8 0.471 0.996 17.3 -11.1 0.932
Msa24 548.4 0.168 0.739 176.8 0.209 0.972 32.7 4.98 0.943
Msa01 Cr(VD) 381.2 0.032 0.613 93.7 0.238 0.895 30.4 -0.001 0.920
Msa24 392.1 0.024 0.597 88.1 0.244 0.879 28.6 -0.003 0.931

with a multi-step adsorption mechanism. Fourier-transform infrared
spectroscopy was employed to identify the changes in functional groups
after dye adsorption (Fig. 6E-H). Prior to adsorption, both Msa01 and
Msa24 biochar samples displayed characteristic peaks corresponding to

C=C (1576 cm™), C-0 (1159 cm™!), C-C (878 cm™!), and C-H (712 cm™)
bonds. After MB adsorption, new peaks appeared to correspond for MB
interactions to C=N (1540 cm™), C-N (1019 cm™), and C-S (731 cm™).
These peaks are characteristic of the MB molecule structure and account
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Table 4

Comparison of MB adsorption capacities among biochar samples prepared in this study and previously reported.
Sample Activating agent Temperature(°C) SBET (m2/g) MB adsorption capacity (mg/g) Reference
Msa01-lignin ZnCl, 400 1558.4 541.9 This work
Straw powder (NH,4)3PO4 900 368.0 156.4 Fan et al. (2025)
Sorghum straw FeCl3 600 268.1 156.4 Xie et al. (2021)
Corn stigma H3PO,4 500 820.0 330.5 Mbarki et al. (2022)
corncob residue-Lignin MnSOy4 400 547.2 249.0 Liu et al. (2021b)
seaweed / 800 926.4 512.7 Ahmed et al. (2019)
Technical lignin FeCls-6 H,O 800 886.0 448.4 Sun et al. (2022)
paper-shelled almonds ZnCl, 500 1100.0 430.0 Wang et al. (2025a)

Table 5

Comparison of RB adsorption capacities among biochar samples prepared in this study and previously reported.
Sample Activating agent Temperature (°C) Sger (m?/g) RB adsorption capacity (mg/g) Reference
Msa24-lignin ZnCl, 400 1526.8 1286.1 This work
@3Xylan / 600 317.0 107.5 Wang et al. (2025b)
Nanotube / / 108.7 33.0 De Benedetto et al. (2020)
traditional Chinese medical residual Mg(OH), 900 681.4 103.1 Zhang et al. 2022¢
Rice husk Sludge 500 29.2 38.5 Chen et al. (2019)
powdered activated carbon Ca(NO3),-4 HO 600 1261.7 660.5 Lv et al. (2020)
Milkvetch plant ZnO-Ce 500 636.5 5.81 Jahani et al. (2023)
MNS KOH / 876.8 376.8 Du et al. (2017)

for its adsorption onto the biochar surface, revealing a strong chemical
interaction between MB and biochar surface. Similarly, the RB adsorp-
tion exhibited the additional C-N and C-S bands, further verifying the
presence of adsorbed dye. Besides new covalent bond formation, the
spectral changes combined with molecular dynamics analysis should
support a mechanism model driven by strong pollutant-surface in-
teractions such as electrostatic and n—r interactions.

3.6. Molecular dynamics simulation for adsorption mechanism

Based on the elemental composition data (Table 2), this study per-
formed molecular dynamics simulations to construct molecular struc-
ture models of the two optimal biochar samples responsible for dye
adsorption (Fig. 7; Fig. S9). The simulation data revealed that the Msa01
biochar exhibited a high interaction energy with MB at —416.4 kJ/mol,
which was approximately 9.2 % stronger than that of the Msa24 biochar
(Fig. 7B & C). Importantly, these high energy magnitudes represent the
cumulative sum of non-covalent interactions (Van der Waals and elec-
trostatic forces) across the entire contact interface of the planar dye
molecules, rather than the formation of covalent bonds. However, the
values were higher in magnitude than the experimental ones, mainly
due to the exclusion of desolvation energy penalties in the simulations.
In addition, the Msa24 biochar displayed a remarkably strong interac-
tion with RB (-480.9 kJ/mol), being consistent with its superior exper-
imental adsorption capacity. This also re-validated the Msa24 biochar
rich at surface oxygen with a compact structure, which should facilitate
77 interactions and hydrogen bonding with the conjugated RB mole-
cules. The findings were thus consistent with the experimental adsorp-
tion data obtained above, and further elucidated the dynamic
relationships among the biochar morphology, surface functionality, and

molecular-level adsorption behavior.

3.7. Reusable ZnClz-activation agent and recyclable biochar

For the sustainability and practical applicability, this study examined
the reuse of activating agent (ZnClz) and the recycling performance of
the biochar adsorbents (Fig. 8A). In terms of agent reuse, ZnCl> was
recovered after use and re-applied in successive rounds of biochar
preparation for MB and RB adsorption (Fig. 8B & C). The Msa01 biochar
samples exhibited an initial MB adsorption capacity of 585.8 mg/g and a
retained capacity of 298.7 mg/g after the third cycle, which was
consistently higher than those of the Msa24 samples. Conversely, the
Msa24 biochar samples remained higher RB adsorption capacities than
Msa01, suggesting that the reused-ZnCl: activations may not substan-
tially alter the biochar structures from the lignin substrates of the two
Miscanthus accessions. The reduced adsorption performance over cycles
was mainly attributed to the partial loss of ZnCl, during repeated acti-
vation. Meanwhile, this study evaluated the recyclability of the biochar
adsorbents by performing five consecutive adsorption—desorption cycles
(Fig. 8D & E). Notably, all biochar samples exhibited only a slightly
reduced RB adsorption capacity over five cycles, and the Msa24 biochar
samples maintained 97.4 % of its initial RB adsorption capacity
(494 mg/g), indicating that the ZnCl.-activated biochar samples
possessed outstanding stability and recyclability for large-molecule dye
adsorption (Fig. 8E). On the other hand, the ZnClz-activated biochar
samples showed a relatively large reduction in MB adsorption capacities
(Fig. 8D). This decline was likely due to the incomplete desorption of the
dye molecules. Specifically, the smaller MB molecules could deeply
penetrate into the internal tortuous mesoporous channels (pore trap-
ping), causing partial pore blockage and making them difficult to fully

Table 6

Comparison of TC adsorption capacities among biochar samples prepared in this study and previously reported.
Sample Activating agent Temperature(°C) Sper (M2/g) TC adsorption capacity (mg/g) Reference
Msa01-lignin ZnCl, 400 1558.4 731.9 This work
crayfish shell ball-mill 800 289.7 60.7 Zhang et al. (2021a)
rice husk Bi,0,CO3 500 22.7 173.0 Luo et al. (2023)
Rice straw FeCl3-6 H,0 and urea 700 606.6 156.0 Mei et al. (2021)
biogas residue ball-mill 700 412.0 289.1 Fan et al. (2024b)
reed KOH 650 965.3 173.6 Zhao et al. (2020)
Cow dung KMnO4 and KOH 700 231.6 142.6 Wang et al. (2025c¢)
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Table 7
Comparison of Cr(VI) adsorption capacities among biochar samples prepared in this study and previously reported.
Sample Activating agent Temperature(°C) Sger (m?/g) Cr(VI) adsorption capacity (mg/g) Reference
Msa24-lignin ZnCl, 400 1526.8 392.1 This work
sesame straw FeCl3-6 H,O 550 / 12.6 Li et al. (2024a)
badam shell H3PO4 550 1359.5 276.6 Jia et al. (2021)
Fe-containing sludge (NH4)2S>0 700 89.5 167.5 Ji et al. 2025
groundnut shell / 350 13.4 142.9 Shakya et al. 2022
banana straw MgCl, 430 36.4 125.0 Li et al. 2020a
sludge KHCO3 700 295.8 41.2 Zhao et al. (2024)
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Fig. 6. Optimal MB and RB adsorption capacities of two optimal ZnClz-activated biochar samples. (A, B) Adsorption capacities of MB and RB under a time course; (C)
Pseudo-first-order kinetic model for dye adsorption; (D) Pseudo-second-order kinetic model; (E) Intraparticle diffusion model; (F, G) Fourier transform infrared
(FTIR) spectra of biochar (Msa01, Msa24) before and after dye adsorption; (H) FTIR spectra of biochar adsorbed with dyes. Adsorption conditions: T = 25°C,t =6 h,
Cump = 400 mg/L, Cgg = 500 mg/L.
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elute. Therefore, both the ZnCl= activation agent and the biochar were
highly reusable and recyclable for dye adsorption.

4. Conclusion

Two optimal hierarchical porous biochar samples were prepared via
low-temperature (400 °C) ZnCl: activation with the alkali-extracted
lignin substrates of two Miscanthus accessions distinguished by G- and
H-monomer proportions. This thermochemical conversion offered sig-
nificant advantages over biomass-derived biochar materials as previ-
ously generated using other chemical activators under much higher
temperatures. Notably, the two optimal biochar samples exhibited
exceptionally large specific surface areas with distinct pore structures,
enabling pollutant-selective adsorption: efficient uptake of small-
molecule dyes (e.g., MB), superior removal of larger organics
including RB and TC, and strong adsorption of heavy metals (e.g., Cr
(VD). Adsorption isotherm and kinetic analyses, supported by molecular
dynamics simulations, revealed a predominant monolayer adsorption
mechanism accompanied by durable pollutant-surface interactions. In
addition, this study highlighted that ZnCl. was reusable as activation
agent and the biochar was highly recyclable as an active adsorbent
particularly for high-capacity RB adsorption. Therefore, this study has
demonstrated a sustainable route for valorizing lignin-rich agricultural
and forestry residues into advanced carbon materials with tunable
selectivity, offering practical potential for the removal of both organic
and inorganic contaminants from wastewater.
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