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ARTICLE INFO ABSTRACT

Keywords: Crop lignocelluloses represent enormous biomass resources convertible for biofuels and bioproducts, but efficient
Protein peptides biomass saccharification is crucially required for large-scale biofuel production. Although plant proteins and
Biosurfactant

chemical surfactants could enhance biomass saccharification, it remains to explore advanced activator for further
improving lignocellulose degradation and conversion to biofuels. In this study, soybean protein and its peptides
were employed into the mixed-cellulases hydrolyses of distinct lignocellulose substrates from representative
bioenergy crops. Significantly, the optimal peptides supply could continuously upgrade the hexoses and bio-
ethanol yields by 20 % and 35 %. Despite the soybean peptides, like plant proteins and Tween-80, could
effectively interact with lignin and xylan for unblocking mixed-cellulases incubated, this study found a unique
interaction between peptides and cellulose microfibrils to retain the mixed-cellulases more accessible for facil-
itating lignocellulose hydrolysis, which caused either significantly higher hexoses yield or more improved sugar
conversion to bioethanol, compared to soybean protein and Tween-80. Based on all findings achieved, this study
finally proposes a novel mechanism model about how green peptides act as both active biosurfactant and enzyme
activator for cascading improvements of lignocellulose enzymatic degradation and yeast fermentation, thereby
providing a powerful strategy applicable for green-like biomass saccharification and highly-efficient bioethanol
production in bioenergy crops.

Co-activator
Enzymatic hydrolysis
Bioethanol fermentation

1. Introduction reduce the recalcitrance, physical and chemical pretreatments have

been executed to partially extricate non-cellulosic polymers (lignin,

Plant cell walls represent abundant polymeric biomasses convertible
for advanced biofuels and valuable bioproducts, thereby aiding to
reduce net carbon release and globe warming [1,2]. However, the native
recalcitrance of lignocellulose crucially obstructs biomass enzymatic
saccharification, leading to a costly conversion to biofuels together with
unavoidable secondary wastes release into the environment [3,4].

Lignocellulose recalcitrance is profoundly directed by plant cell wall
composition, wall polymer aspect and wall-network pattern [5]. To

hemicellulose) and to specifically lessen cellulose crystallinity and
polymerization [6,7]. Particularly, the alkali pretreatment could effec-
tively co-extract hemicellulose and lignin in the most bioenergy crops
examined [8,9]. As cellulosic ethanol has been deemed as an
outstanding additive into the petrol fuels, biomass enzymatic sacchari-
fication is considered as the crucial step to upgrade bioethanol pro-
ductivity by employing active lignocellulose-degradation enzymes
including exoglucanases (CBHs), endoglucanase (EGs), p-glucosidases
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(BGs) and xylanases [10,11]. Because such mixed-cellulases could be
simply adsorbed with lignin and hemicellulose, high dosages of enzymes
cocktails are in principle required to load for biomass enzymatic
saccharification [12,13]. Meanwhile, large amounts of toxic compounds
could be generated from both biomass pretreatment and enzymatic
saccharification, which consequently inhibit final yeast fermentation
with relatively low sugar-ethanol conversion rate [14]. Therefore, it
becomes important to explore green-like biotechnology applicable for
further enhancing biomass saccharification and bioethanol production.

The mixed-cellulases are the crucial biocatalysts that convert car-
bohydrates in lignocellulosic biomass into fermentable sugars [15].
Although genetic engineering of fungi strains could improve the secre-
tion of mixed-cellulases, it is hard to find out the optimal proportion
among four types of enzymes, due to diverse and complicated ligno-
cellulose structures and functions of major bioenergy crops [16].
Alternatively, surfactant-like additives are increasingly implemented for
widespread enhancements of biomass enzymatic saccharification [17].
Particularly, plant proteins and chemical surfactants are co-supplied to
improve cellulose enzymatic hydrolysis by effectively blocking cellu-
lases adsorption with lignin and hemicellulose [18]. For example,
Amaranthus green proteins and Tween-80 have been respectively
examined with highly adsorptive capacities with lignin to remarkably
enhance lignocellulose enzymatic hydrolysis for high-yield bioethanol
production in bioenergy crops examined [19,20].

Soybean plant stands out as a rich protein source for animal feed
after oil extraction [21]. As soybean protein is of amphoteric property
for active interaction with bioactive molecules, it has been characterized
as effective biosurfactant for enhancing lignocellulose enzymatic
digestion [22,23]. Meanwhile, soybean protein is digested to produce
the peptides as potential nutritional ingredients in food, medicine,
cosmetics and others [24]. However, little has been yet investigated
about protein peptides roles in biomass enzymatic saccharification and
bioethanol production.

By employing distinct lignocellulose substrates obtained from alkali
pretreatments with three representative bioenergy crops (Miscanthus,
barely, poplar), this study initially co-supplied different dosages of
soybean protein and peptides with mixed-cellulases to test the
enhancement roles in biomass enzymatic saccharification. By compari-
son with chemical surfactant (Tween-80) and soybean protein, the
soybean peptides were identified as the optimal biosurfactant for dual
enhancements of biomass saccharification and bioethanol production.
Accordingly, this work detected the dual interactions of soybean pep-
tides with lignin and cellulose, being different from soybean protein and
Tween-80, and thus explored a novel function about the simultaneous
lignin interaction and cellulases co-activation with the peptides. Finally,
this study proposed a hypothetic model to address the findings about
soybean peptides as super alternatives to soybean proteins and Tween-
80 for the hexose and ethanol yields increased by 20 % and 35 % via
dual mechanisms: (1) Soybean peptides universally prevent the cellu-
lases from lignin adsorption; (2) Soybean peptides uniquely interact
with cellulose microfibrils to facilitate cellulases hydrolytic activity.

2. Materials and methods
2.1. Biomass, enzymes and microorganisms

Three types of lignocellulose samples (Miscanthus, barley, poplar)
were respectively collected from Huazhong Agricultural University
experimental station. The biomass samples were dried at 50 °C, ground
into powders through a 40 mesh sieve and stored in a dry container until
use. The mixed-cellulases enzymes (HSB) was obtained from Imperial
Jade Biotechnology Co., Ltd. Ningxia, China. The commercial enzymatic
cocktail contained B-glucanase (>3.60 x 10* U), cellulase (>3.60 x 102
U) and xylanase (>6.00 x 10* U). Soybean protein and pepsin were
purchased from Xiya Chemical Technology (Shandong) Co., Ltd, and
Shanghai Macklin Biochemical Co., Ltd., respectively.
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2.2. Wall polymer extraction and determination

Wall polymer fractionation was accomplished as previously
described [25,26]. Cellulose content was estimated by determining
hexose of the cellulose fraction using the anthrone/H;SO4 method. Total
hemicelluloses were calculated by determining all hexoses and pentoses
using the orcinol/HCl method. Lignin content was measured by the
two-step acid hydrolysis method according to the NREL’s laboratory
analytical protocol [27]. All experimental analyses were performed in
biological triplicate.

2.3. Biomass chemical pretreatments

H5SO4 pretreatment: The well-mixed biomass samples of Miscanthus,
barley and poplar were respectively treated with 6 mL H2SO4 at different
concentrations (1 %, 2 %, 3 %, 4 %, 6 %, 8 % v/v). The samples were
sealed and heated at 121 °C for 20 min in autoclave (0.15 Mpa). After
centrifugation at 3000g for 5 min, all supernatants were collected for
pentoses and hexoses assay [28,29].

NaOH pretreatment: The well-mixed biomass samples were incu-
bated with 6 mL NaOH at various concentrations (0.5 %, 1 %, 1.5 %, 2
%, 3 %, 4 %, 6 %, 8 %, w/v) under 150 rpm shaken at 50 °C for 2 h. The
remaining pellets were washed with 10 mL distilled water for 5-6 times
until pH 7.0. Samples were only added with 6 mL distilled water and
shaken for 2 h at 50 °C as control [30].

2.4. Preparation of soybean peptides

Pepsin solution was prepared freshly for each assay by dissolving
pepsin with HCl solution (pH = 3.0) as described below. About 200 pL
HCI solution was added into 2 mL plastic tubes consisting of 0.036 g
pepsin, and 100 pL pepsin solution was incubated with 0.36 g soybean
proteins at 50 °C with continuous shaking for 3 h. The ratio of pepsin to
soybean protein was at 1:20 on a weight basis [31,32]. After boiling
water for 10 min to stop the reaction, soybean peptides were neutralized
and collected until in use. About 100 pL inactivated pepsin was added
into 0.36 g soybean proteins as the control. The experiments were
conducted under independent biological triplicate.

2.5. Yeast fermentation

Saccharomyces cerevisiae strain (Angel yeast Co., Itd., China) was
used for fermentation testing [33]. Angel yeast cells were cultured for 2
days in 250 mL YPD (80 g/L, 160 g/L and 320 g/L glucose) with 12 %
soybean protein/peptides at 37 °C with orbital shaking at 150 rpm, cell
density was analyzed from turbidity readings at 600 nm after dilution
with water.

2.6. Biomass enzymatic saccharification and ethanol measurement

Biomass enzymatic saccharification and yeast fermentation were
respectively conducted as previously described [34]. The pretreated
lignocelluloses were incubated with 0.20 % (w/v) mixed-cellulases
(HSB) with final concentrations of cellulases at 10.60 FPU/g biomass
and xylanase at 6.72 U/g biomass with 5 % solid loading [35]. The
enzymatic hydrolysis was performed at 50 °C under 150 rpm shaken.
The released hexose and pentose were measured by anthrone/H2SO4
and orcinol/HCl methods, respectively. S. cerevisiae strain was inocu-
lated with the enzymatic hydrolysates [36]. The fermentation solution
was distilled for the determination of ethanol content. The ethanol
content was measured by the K;Cr,O; Method [37]. All assays were
accomplished at independent triplicate.

2.7. Cellulase activity

Filter paper activity/FPA was determined for cellulase activity assay
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by incubating 2 g/L commercial mixed-cellulases (HSB) with 50 mg
Whatman filter paper co-supplied with 12 % soybean protein or 12 %
soybean peptides at phosphate buffer (0.05 M, pH 4.8) for 48 h at 50 °C
as previously described [38]. The well-mixed sample was incubated for
60 min at 50 °C, and the reaction was stopped by adding 2 mL DNS
followed by boiling water for 10 min. One FPA unit was defined by
measuring the amount of enzyme releasing 1 pmol reducing sugar per
min from Whatman filter paper grade No.1. All proteins in supernatants
were detected by Bradford assay using UV-vis spectrometer (V-1100D,
Shanghai MAPADA Instruments Co., Ltd. Shanghai). All assays were
accomplished at independent triplicate.

2.8. Protein binding assay

Protein binding assay was conducted as previously described [39].
About 5 mg soybean protein/peptides (per mL) was incubated in 0.2 M
Na-acetate buffer (total volume of 2 mL, pH 4.8) with 50 mg commercial
lignin, xylan and Avicel/cellulose. After shaken at 25 °C for 12 h, the
samples were centrifuged at 4000xg for 5 min. All proteins in super-
natants were detected by Eppendorf BioPhotometer. All assays were
accomplished at independent triplicate.

2.9. SDS-PAGE analysis

SDS-PAGE was operated using Stain-Free precast gels (Beijing Zoman
Biotechnology Co., Ltd.) according to the manufacturer’s instruction.
About 30 pL supernatant were respectively loaded into SDS gels. Protein
samples were visualized with colloidal Coomassie blue staining as pre-
viously described [40].

2.10. Zeta potential and surface tension measurement

Soybean protein and peptides were respectively incubated with
biomass substrates of Miscanthus, barley and poplar samples for 12 h
adsorption. The zeta potential of the supernatants was detected by a
Dynamic Light Scattering (DLS) Analyzer equipped with a laser Doppler
microelectrophoresis (Zetasizer Nano ZS90, Malvern Instruments, Mal-
vern, UK) as previously described [41]. The samples were filtered by
0.45 pm syringe membranes (Millipore, Billerica, MA, USA) for analysis
and deionized water was used for background correction. All zeta po-
tential measurements were performed under independent triplicate.

The surface tension y of various solutions were performed via a NIMA
ST-9000 tensiometer (Nima Technology, Coventry, UK) as previously
described [18,42]. Each sample was measured until y became constant,
which was after at least 10 min to ensure the saturation of surfactant
adsorption on the air/water interface. The calibration reference was the
vy of Milli-Q water was measured to ensure accuracy. The surface tension
of the soybean protein and soybean peptides solution were measured
immediately and maintained at an ambient temperature of approxi-
mately 23 °C.

2.11. Statistical analysis of correlation coefficients

Statistical analysis was performed using IBM SPSS Statistics software
with analysis of variance (ANOVA), and the data were presented as
mean + SD with significant difference at the 95 % confidence level (p <
0.05). Student’s t-test was performed using the IBM SPSS Statistics
software. All experimental assays were accomplished at independent
triplicate unless indicated.

3. Results and discussion

3.1. Soybean peptides are constantly effective for enhancing biomass
enzymatic saccharification in bioenergy crops

Given plant proteins play a surfactant-like role for lignocellulose

Renewable Energy 256 (2026) 124651

enzymatic hydrolyses [18], this study firstly attempted to explore if
protein peptides are also effective for enhancing biomass enzymatic
saccharification (Fig. 1). By employing the peptides of soybean protein
obtained from classic pepsin digestion, we respectively supplied
different dosages of soybean proteins and its peptides into the enzymatic
hydrolyses of NaOH-pretreated lignocellulose substrates in three
representative agriculture and forestry plant species such as Miscanthus,
barley and poplar (Fig. 1A). Even though those three bioenergy crops
contain distinct lignocelluloses in their raw materials and
alkali-pretreated residues (Table 1), this study determined consecutively
raised hexoses yields (% cellulose) released from mixed-cellulases hy-
drolyses, while either soybean protein or peptides are increasingly
co-suppled (Fig. 1B-D). Particularly, the peptides supply could cause
consistently higher hexoses yields than the soybean protein did, and
much more hexoses yields were obtained from the optimal dosage (12
%) supplement in three bioenergy crops examined. Meanwhile, we
performed commonly acid and alkali pretreatments using different
concentrations of HySO4 and NaOH to determine hexoses yields released
from mixed-cellulases hydrolyses without soybean protein and peptides
supply (Fig. S1). Despite the acid and alkali pretreatments at high con-
centrations could enhance biomass enzymatic saccharification in three
bioenergy crops, their hexoses yields were still lower than those of the
dilute-alkali pretreated lignocelluloses co-supplied with the optimal
peptides, indicating that the peptides supply should be a green-like
technology for much more enhancement of biomass saccharification
via less acid/alkali application for biomass pretreatment. Since the
peptides solution contains the pepsin applied for soybean protein
digestion, we checked that the co-supplement of inactivated pepsin had
little impact on lignocelluloses hydrolyses, but active pepsin loading
could completely stop biomass enzymatic saccharification, which
should be due to the mixed-cellulases digestion by pepsin (Table S1). As
soybean protein digestion could produce small amounts of amino acids,
this study also co-supplied four major kinds of amino acids into the
mixed-cellulases reaction, leading to slightly reduced hexoses yields
from enzymatic hydrolyses of alkali-pretreated lignocelluloses
(Table S2). Because Tween-80 has been well defined as active chemical
surfactant applicable for enhancing biomass enzymatic saccharification
[19,20], this study also co-supplied the optimal Tween-80 into the
enzymatic hydrolyses of alkali-pretreated lignocelluloses, and then
determined slightly higher hexoses yields than those of the
peptides-supplied samples in three bioenergy crops (Fig. 1E-G). There-
fore, the results revealed that the soybean peptides should play a specific
enhancement role in biomass enzymatic saccharification.

3.2. Soybean peptides are optimal for maximizing bioethanol production

As the optimal supplements of soybean protein/peptides and Tween-
80 could respectively enhance biomass enzymatic saccharification
under NaOH pretreatments as described above, this study consequently
performed yeast fermentation for bioethanol production in two bio-
energy crops (Fig. 2). Compared to the control (without proteins/
peptides/Tween-80 supplement), only peptides supplement could
significantly increase bioethanol yield by 23 % at p < 0.05 level (n = 3)
in Miscanthus samples, whereas the supplements of soybean protein,
peptides and Tween-80 led to significantly raised bioethanol production
by 24 %, 35 % and 27 % in barley samples, respectively (Fig. 2A and B).
Consistently, the peptides supply remained to achieve higher bioethanol
yields than the soybean protein and Tween-80 did in all Miscanthus and
barley samples examined. Furthermore, the peptides supply could cause
the hexose-ethanol conversion rates at 74 % and 75 % in Miscanthus and
barley samples, whereas either the protein and Tween-80 supply or the
control sample showed their hexoses-ethanol conversion rates ranged
from 62 % to 72 % (Fig. 2C and D). To understand how the peptide
supply improves the conversion rate, this study performed a standard
yeast fermentation to observe yeast cell growth by employing three
dosages of standard glucose (80, 160, 320 g/L) as sole carbon source
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Fig. 1. Comparison of soybean protein and its peptides enhancements for biomass enzymatic saccharification of three representative bioenergy crops. (A)
Experimental flow chart; (B, C, D) Hexoses yields released from enzymatic hydrolyses of alkali-pretreated lignocelluloses co-supplied with different dosages of protein
and peptides in Miscanthus (2 % NaOH pretreatment), barley (1 % NaOH) and Poplar (4 % NaOH), respectively; (E, F, G) Hexoses yields from enzymatic hydrolyses of
three lignocellulose samples as shown (B, C, D) co-supplied with 12 % protein or 12 % peptides or 1 % Tween-80; Control without any protein/peptides/Tween-80
supplement; Data as means + SD (n = 3); The letters (a, b, ¢, d) highlighted as significant differences among the samples examined by Tukey’s test (p < 0.05).

Table 1
Lignocellulose compositions of raw materials and NaOH-pretreated residues of three bioenergy crops.
Cellulose Hemicellulose Lignin
Raw NaOH- Raw NaOH- Raw NaOH-
pretreated pretreated pretreated
Miscanthus 2 % 36.81 +0.44 28.79+1.13 —21.8 %" 22.29 + 0.55 15.21 4+ 0.22 —31.80%  28.81 £0.60 13.28 +0.53 —53.90 %
NaOH
Barley 1 % NaOH 43.07 £1.12  31.39+0.51 —27.10%  26.51 +0.71 14.70 £+ 0.12 —44.60%  21.944+0.69 11.14 £0.31 —49.20 %
Poplar 4 % NaOH 30.92+1.57 30.77 £ 0.87 —0.50%  12.01 +£0.31 13.30 + 0.94 10.70%  23.12 +£0.71 16.28 + 0.28 —29.60 %

Data as means + SD (n = 3)

# As reduced percentage of pretreated lignocellulose relative to the raw material.

(Fig. S2). During a time course incubation, the peptides supply could not
significantly alter the numbers of yeast cells compared to the control,
revealing that the peptides supply should not impact yeast cell growth.
On the other hands, the peptides supply may reduce toxic chemical in-
hibition to yeast fermentation and/or improve hexose-ethanol meta-
bolism in yeast cells. Despite of relatively higher hexose yield achieved,
the Tween-80 supply caused relatively lower hexose-ethanol conversion
rates than the peptides supply did, which was validated by mass balance
analysis (Fig. S3). This finding was also consistent with the previous
reports about relatively more toxic chemical release from Tween-80
supply including acetic acid, furfural, and 5-hydroxymethylfurfural,
which can inhibit the growth and development of yeast cells [14,23].
Furthermore, this study compared with other seven biosurfactants
supplements from previously reports such as cationic kraft lignin [43],
soybean protein [22,44-46], sophorolipid [47], peptone [48], soy skim
[49], bovine serum albumin [50] and Tween-80 [51], and the soybean
peptide supply performed in this work could even cause relatively more
increases of both hexoses and bioethanol yields (Table 2), indicating that
the soybean peptides should be one of the optimal biosurfactants for
maximizing biomass enzymatic saccharification and bioethanol

conversion. Further based on the globe biomass yields harvested from
Miscanthus, barley and poplar growths, this study estimated total bio-
ethanol production potential from soybean protein and peptide supply
(Table 3) [52-54]. By supplying soybean peptides into biomass pro-
cesses, the Miscanthus, barley and poplar could respectively produce the
bioethanol at 2.28, 0.64, 0.47 ton per hectare/per year, which were
consistently higher than those of the soybean protein supply and the
control, providing an applicable strategy to maximize bioethanol pro-
duction from soybean peptides supply and global Miscanthus growth.
Despite the soybean peptides supplement enabled more bioethanol
production, its processing cost from pepsin digestion should be rela-
tively higher than those of the soybean protein and Tween-80 supplies
accounting for an additional $0.0018 per application, which may finally
cause less profit according to the minimum sale price of bioethanol at
0.47 $/kg [55]. Thus, it remains to explore recycling of the soybean
peptides from bioethanol refinery for value-added bioproducts in the
future.
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Fig. 2. Comparison of bioethanol productivity by yeast fermentation with hexoses released from enzymatic hydrolyses co-supplied with soybean protein/
peptides and Tween-80 in two bioenergy crops. Data as means & SD (n = 3); * As a significant different ethanol yield or conversion rate relative to the control by
t-test at p < 0.05; 7 As increased rate of ethanol yield/rate relative to the control.

Table 2
Comparison of hexoses and bioethanol yields achieved from peptides supply in this study and other additives in previous works.
Additives Biomass (w/v) Pretreatment Enzyme loading Hexose yield Ethanol yield Ref.
increasing Rate (%) increasing Rate (%)
Peptides 5 % Barley 1 % NaOH (HSB) 10.6 FPU/g 18.0° 35.0" This
study
Cationic kraft lignin 10 % Corn 2 % NaOH Azure Biological (10.0 FPU/g) 11.6 - [43]
In-house extracted 15 % Sugarcane Liquid hot water Cellic CTec3 (5.0 FPU/g) 76.0 - [44]
soy protein bagasse

Soybean protein 20 % Apple 1 % HyS04 Cellic CTec2 (60.0 FPU/g) 24.8 20.9 [45]
pomace

Soybean protein 15 % Sugarcane Liquid hot water Cellic CTec2 (5.0 FPU/g) 61.0 86.0 [46]
bagasse

Soybean protein 5 % Sugarcane Steam-exploded Filamentous fungus 200.0 - [22]
bagasse Enzyme cocktail

Sophorolipid 20% Sugarcane 2 % NaOH Cellulase, hemicellulase And cellobiase 17.8 - [47]
bagasse (10.0 FPU/g, 150 U/g, 60 mg/g)

Peptone Rice 1M NaOH Acremonium cellulase 13.7 - [48]

Soy skim 40 % Corn Cold deionized (DI) a-Amylase, glucoamylase - 20.0 [49]

water, 80 °C
Bovine serum 2 % Rice 2 % NaOH Acremonium Cellulase (15.0 FPU/g) - 13.6 [50]
albumin
Tween-80 2 % Wheat 1.2 % H,ySO4 Cellulase and cellobiase (25.0 FPU/g, 2.5 13.9 - [51]

CBU/g)

# As increased rates of hexoses yield (% cellulose) and.

b ethanol yield (% dry matter) compared to the control (without additives); - As unavailable data.

3.3. Soybean peptides are consistent to retain high cellulases activities

To test the soybean peptides enhancement on biomass enzymatic
saccharification, this study conducted a standard assay of cellulases
activities in vitro (Fig. 3). By incubation with Avicel/cellulose substrate
with mixed-cellulases, the supplement of 12 % soybean protein or 12 %
soybean peptides could cause consistently higher filter paper activities
(FPAs) than those of the control (without soybean protein/peptides)
during a time course of reactions from 12 h to 48 h, but the peptides

supply remained a higher activity than the soybean protein did (Fig. 3A).
Meanwhile, the SDS gel running was performed to separate the major
enzymes of mixed-cellulases, and both soybean protein and peptides
samples exhibited relatively higher quantities of two major enzymes
bands than those of the control after 36 h and 48 h reactions (Fig. 3B;
Fig. S4). Based on the semi-quantitation of two major bands accounting
for CBHI and EG enzymes [40], the control sample showed much
reduced CBHI and EG levels after 48 h incubation, indicating a drastic
enzyme self-degradation (Fig. 3C and D). Even though both soybean
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Table 3
Estimation of potential global bioethanol yields (t/ha/year) in three bioenergy crops from soybean protein and peptides supply.
Sample BiomassYield t/ha/ Bioethanol yield (t/ha/year) Ref.
year Control  Value ($) With soybean Value ($§)  With soybean Value ($) With Tween- Value ($)
protein peptides 80

Barley 6 0.4692 220.52 0.5832 274.10 0.6402 300.89 0.5988 281.43 [52]
Miscanthus 24 1.8552 871.94 2.0640 970.08 2.2824 1072.73 1.9945 937.42 [53]
Poplar 14 0.4323 203.17 0.4576 215.06 0.4672 219.59 0.5539 260.36 [54]
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protein and peptides samples retained two enzymes at high levels, the
peptides supply caused much higher CBHI and EG quantities than the
soybean protein did after 48 h reaction, consistent with their different
FPAs examined. Furthermore, all control and protein/peptides samples
showed similar levels of two major enzymes during 24 h incubations,
suggesting that soybean protein and peptides should also activate cel-
lulose enzymatic hydrolyses. The results thus reveal that the soybean
peptides could not only increase cellulases activity, but also play a role
in preventing cellulases from self-degradation for a longer reaction.

3.4. Soybean peptides enable a broad interaction with major wall
polymers for unblocking mixed-cellulases

To explore specific role of soybean peptides in biomass enzymatic
saccharification, this study in vitro detected soybean protein and pep-
tides interactions with three standard lignocellulose substrates (lignin,
xylan, cellulose/Avicel) (Fig. 4A), which are accounting for three major
wall polymers of bioenergy crops [18]. Compared to the control, about
66 % soybean protein and 69 % peptides were respectively precipitated
from lignin adsorption, whereas about 49 % and 24 % of soybean protein
and peptides were accounted from xylan adsorption (Fig. 4B). Notably,
only peptides showed a significant precipitation with cellulose/Avicel

substrate, suggesting that soybean peptides should involve in a broad
interaction with three major wall polymers. Furthermore, this study
attempted to observe a time course interaction among soybean pro-
tein/peptides, lignocellulose substrates and mixed-cellulases in vitro
(Fig. 4C; Fig. S5). As total soluble proteins are mainly derived from the
mixed-cellulases incubated (90 % of total), total soluble protein levels of
the supernatants were detected to account for active mixed-cellulases.
Among all time-course reactions examined, the soybean protein and
peptides samples showed relatively higher levels of total soluble pro-
teins than those of the control samples, revealing much more
mixed-cellulases unblocked due to the soybean protein and peptides
interactions with lignocelluloses. However, all peptides samples
remained much higher soluble protein levels than the soybean protein
did, consistent with their distinctive biomass enzymatic saccharification
examined. On the other hands, total soluble proteins of the cellulose
samples exhibited much more reducing levels from long time incubation
among all samples detected, confirming a mixed-cellulases self--
degradation during the cellulose enzymatic hydrolysis (Fig. 3). It should
also interpret a relatively xylanase self-degradation in the xylan sam-
ples, owing to the mixed-cellulases containing active xylanases [40,41].
Taken all together, two modes were raised to explain characteristic
soybean protein and peptides interactions with three lignocellulose
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substrates for activating mixed-cellulases (Fig. 4D). Despite of similar
actions with lignin or xylan from soybean protein and peptides supple-
ments, the peptides showed a unique interaction with cellulose substrate
to facilitate mixed-cellulases accessible for cellulose hydrolysis,
providing the evidence about more enhanced biomass enzymatic
saccharification from the peptide supply.

3.5. Soybean peptides play biosurfactant role in biomass enzymatic
saccharification

Since the soybean peptides interaction may change lignocellulose
hydrophobicity, hydrogen binding capacity, and surface property
[56-58], this study detected the potential surfactant roles of soybean
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protein and peptides in biomass enzymatic saccharification of three
bioenergy crops (Fig. 5). By co-supplying soybean protein or peptides
into the mixed-cellulases hydrolyses with alkali-pretreated lignocellu-
lose substrates of Miscanthus, barley and poplar, this study determined
significantly reduced zeta potential values of all reaction solutions by 78
%-239 % at p < 0.01 levels (n = 3), compared to the control samples
without soybean protein and peptides (Fig. 5A). Likewise, the peptides
samples remained lower zeta potential values than the soybean protein
samples did, consistent with their distinct enhancements of biomass
enzymatic saccharification. Based on correlation analyses of all samples
conducted, this study found that the reduced zeta potential rates could
positively increase hexoses yield at significant level with R? value of
0.79 (Fig. 5B). Furthermore, this study determined the surface tensions
of both soybean protein and peptides solutions at different dosages
(Fig. 5C). Compared to the control, all soybean protein and peptides
solutions showed much reduced surface tension values, which should be
accountable for their improved biosurfactant property. Meanwhile,
relatively lower surface tensions were detected in supernatants of the
enzymatic saccharification of Miscanthus alkali-pretreated lignocellu-
loses co-supplied with soybean protein and peptides (Table S3; Fig. 1E).
As plant proteins have been characterized as effective biosurfactants
[12,18], the results reveal that soybean peptides could even act as a
better biosurfactant for enhancing biomass enzymatic saccharification.

3.6. Mechanisms of distinct soybean protein and peptides enhancements
for biomass enzymatic saccharification and bioethanol production

Based on all findings achieved in this study, a mechanism model was
proposed to illuminate how soybean protein and peptides supplements
could distinctively enhance biomass enzymatic saccharification and
bioethanol production in bioenergy crops (Fig. 6). As three representa-
tive bioenergy crops provide distinct lignocelluloses substrates, the al-
kali pretreatments caused largely varied extractions of lignin and
hemicellulose. Three major polymers (cellulose, hemicellulose, lignin)
of alkali-pretreated lignocelluloses were thus accessible to interact with
soybean peptides, whereas the soybean protein only interacted with
hemicellulose and lignin. Such broad interactions of soybean peptides
could not only efficiently block lignin adsorption with mixed-cellulases,
but also effectively retain the mixed-cellulases to attack and digest cel-
lulose, which should cause an integrative enhancement of biomass
enzymatic saccharification for relatively higher bioethanol production
in bioenergy crops. This may also explain why the same dosage of soy-
bean protein caused relatively less enhancement of biomass enzymatic
saccharification than the peptides did, due to its non-interaction with
cellulose microfibrils. Nevertheless, it would be interesting to explore
how soybean peptides enable interaction with cellulose microfibrils for
improving lignocellulose enzymatic hydrolysis in future study.

4. Conclusion

By employing distinct lignocellulose substrates of three representa-
tive bioenergy crops, this study demonstrates that soybean peptides
supply could exceptionally enhance biomass enzymatic saccharification
to achieve maximum bioethanol production compared to the soybean
protein and Tween-80 as previously reported. The soybean peptides
enable a universal interaction with lignin and xylan to prevent mixed-
cellulases from any non-specific adsorption as the soybean protein and
Tween-80 do. However, unlike the soybean protein and Tween-80, the
soybean peptides are identified with a unique interaction with cellulose
microfibrils to facilitate cellulases accessible for cellulose hydrolysis. A
novel mechanism model is thus raised to elucidate how soybean pep-
tides cause dual enhancements of hexoses and bioethanol production via
exceptional interactions with three major wall polymers, providing an
advanced biotechnology for biomass saccharification and bioethanol
production in bioenergy crops.
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