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Abstract: This research work aims to synthesize environ-
mentally benign and cost-effective metal nanoparticles. In

this current research scenario, the leaf extract of Cedrela
toona was used as a reducing agent to biosynthesize silver
nanoparticles (AgNPs). The synthesis of AgNPs was con-
firmed by the color shift of the reaction mixture, i.e., silver
nitrate and plant extract, from yellow to dark brown col-
loidal suspension and was established by UV-visible ana-
lysis showing a surface plasmon resonance band at 434 nm.
Different experimental factors were optimized for the for-
mation and stability of AgNPs, and the optimum conditions
were found to be 1 mM AgNO3 concentration, a 1:9 ratio of
extract/precursor, and an incubation temperature of 70°C
for 4 h. The Fourier transform infrared spectroscopy spectra
indicated the presence of phytochemicals in the leaf extract
that played the role of bioreducing agents in forming AgNPs.
X-ray diffraction patterns confirmed the presence of AgNPs
with a mean size of 25.9 nm. The size distribution and mor-
phology of AgNPs were investigated by scanning electron
microscopy, which clearly highlighted spherical nanoparti-
cles with a size distribution of 22–30 nm with a mean
average size of 25.5 nm. Moreover, prominent antibacterial
activity was found against Enterococcus faecalis (21 ±

0.5mm), Bacillus subtilis (20 ± 0.9mm), Pseudomonas aeru-
ginosa (18 ± 0.3 mm), Staphylococcus aureus (16 ± 0.7 mm),
Klebsiella pneumoniae (16 ± 0.3 mm), and Escherichia coli (14
± 0.7 mm). In addition, antioxidant activity was determined
by DPPH and ABTS assays. Higher antioxidant activity was
reported in AgNPs compared to the plant extract in both
DPPH (IC50 = 69.62 µg·ml−1) and ABTS assays (IC50 =

47.90 µg·ml−1). Furthermore, cytotoxic activity was also
investigated by the MTT assay against MCF-7 cells, and
IC50 was found to be 32.55 ± 0.05 µg·ml−1. The crux of this
research is that AgNPs synthesized from the Cedrela
toona leaf extract could be employed as antibacterial,
antioxidant, and anticancer agents for the treatment of
bacterial, free radical-oriented, and cancerous diseases.
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1 Introduction

We have set foot into an epoch of the notion “The smaller,
the better.” Nano broaches to things that are smaller than
the smallest. Therefore, in the bare-bone version of the
definition, “The exploration and exploitation of structures
between 1 nanometer (nm) and 100 nanometers in size are
referred to as nanotechnology” [1]. Silver nanoparticles
(AgNPs) have managed a vast space in the family of nano-
particles because of their diverse applications in the fields
of medicine, food, textile, health, and agriculture. More-
over, AgNPs have emerged as an efficacious antibacterial
agent and can even show their activity against antibiotic-
resistant bacteria. Therefore, there is a need to widen the
implication of Ag nanoparticles as antibacterial agents.
These properties are attributed to AgNPs because of their
crystallographic surface structure and stupendous surface-
to-volume ratios. They enter the cell walls of bacteria and
make “pits,” which lead to the death of the cell. The con-
centration, shape, and size of the AgNPs decide the extent
of their antibacterial activity [2,3].

Oxidative stress is the phenomenon that is induced
when the equilibrium between oxidants and the antioxi-
dant defense of a cell is disturbed, usually by the increase
in the concentration of oxidants like reactive oxygen spe-
cies (ROS) or reactive nitrogen species. The appearance of
these oxidants could cause oxidative modifications in the
biological system at the molecular level (DNA, proteins,
lipids, etc.), leading to cell death [4]. Oxidants could change
the membrane permeability by the production of perox-
ides or aldehydes and oxidation of double bonds of poly-
unsaturated fatty acids in lipids. Their stress on proteins
can cause modifications in enzymatic activity, protein inac-
tivation, and changes in ion transport. They can damage
the DNA by inhibition of proteosynthesis, translational
errors, and base modification, resulting in mutations or
deoxyribose ring cleavage [5]. Considering the aforemen-
tioned changes, a connection can be developed between
oxidative stress and various diseases like cancer, cardio-
vascular diseases, atherosclerosis, schizophrenia, or Alz-
heimer’s disease [6,7]. Therefore, there is a need to tackle
the overproduction of ROS through the integration of anti-
oxidant compounds. Besides the applications of AgNPs in
various fields, they also serve as an antioxidant agent. The
simple synthesis, easy availability, and cost-effective approach

of AgNPs have replaced the need for other antioxidant com-
pounds. They could act as catalysts for the polyphenols that
serve as antioxidant agents [8] or could simultaneously work
as antioxidant agents with compounds like phytochemicals
(flavonoids) through single hydrogen and electron transfer
[9]. The presence of flavonoids, phenolic compounds, and
terpenoids allows the AgNPs to exhibit antioxidant activity
as a singlet oxygen quencher, reducing agent, or hydrogen
donor [10]. Moreover, the greater the degree of hydroxyla-
tion in phenolic compounds, the higher the radical scaven-
ging capacity of the AgNPs [11].

AgNPs also exhibit cytotoxic potential against cancer
cell lines. Their cytotoxic behavior depends upon their
shape and size. For instance, the anticancerous effect
against the human lung epithelial A549 cells was shown
by spherical Ag nanoparticles (30 nm) of length 1.5–2.5 µm
and diameter 100–160 nm [12]. The reason behind the
supremacy of this size and shape is that it facilitates the
direct contact of AgNPs on cell surfaces to induce cytotoxi-
city [13]. The other factor that affects the cytotoxicity of
AgNPs is the concentration. Low concentrations of AgNPs
are safe, while higher concentrations are toxic. When dif-
ferent concentrations of AgNPs were tested on the cell
lines, they revealed a dose-dependent increase in cell inhi-
bition [14]. Moreover, when variable doses were tested
with different formulations, they showed cytotoxicity or
enhanced anticancer activity.

AgNPs could be synthesized via three routes: physical,
chemical, and biological. However, plants have emerged as
promising candidates for the production of AgNPs for their
enhanced scale-up capability, non-toxicity, cost-effective-
ness, and simple synthesis method. Moreover, their bio-
compatibility characteristics and non-pathogenic behavior
make them ideal for applications in biomedicine [15]. Alka-
loids and flavonoids are phenolic compounds (components
of plant extract), soluble in water, and serve as both cap-
ping and reducing agents. The biosynthesis of AgNPs using
plant extracts is pretty simple. The plant extract is treated
with silver precursor like AgNO3 at room temperature,
which results in the generation of Ag nanoparticles. How-
ever, the characteristics of AgNPs (size and morphology)
are defined by the reaction conditions, reaction duration,
Ag+ concentration, reaction temperature, extract composi-
tion, and stirring rate [16]. The presence of biofunctional
groups such as hydroxyl groups, germinal methyl, amine,
and polypeptides in plant extracts may be considered to be
responsible for the bioreduction of silver ions and the
synthesis of AgNPs [17], as shown in Figure 1. Plant-based
AgNPs exhibit more antibacterial and antioxidant potential
compared to physical or chemical synthesis-based AgNPs
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[18–20]. Therefore, plant-based synthesis of AgNPs has
been employed in this research work.

Cedrela toona Roxb. commonly known as “Tun,” is a
medium-sized, deciduous tree indigenous to Pakistan
(Figure 2). In Islamabad, Pakistan, it has been extensively
planted as an avenue tree. It is planted as a farm forestry
tree in parks, gardens, and roadsides. Moreover, it is pre-
sent along the plain east of the Indus River. The fast-
growing capability of Cedrela toona makes it a good choice
for reforestation projects. Cedrela toona finds its massive
applications in timber, ornamental, fodder, furniture, con-
struction, and medicine. Cedrela toona has a spacious
range of utilization in medicine and pharmacology. Its
everyday therapeutic use involves the treatment of dysen-
tery and rheumatism [21] and also as an astringent drug
[22]. Moreover, the fruit extract of Cedrela toona Roxb. is a
natural source of antioxidants [23]. Antibacterial proper-
ties have also been reported in the extract of Cedrela toona
[24]. In this research work, AgNPs were synthesized using
the plant leaf extract of Cedrela toona Roxb. After the for-
mation of AgNPs, they were characterized using UV visible
spectroscopy, Fourier transform infrared spectroscopy
(FTIR), X-ray diffraction (XRD), and scanning electron

microscopy (SEM). After characterization, the antibac-
terial and ROS scavenging activity of the AgNPs were
evaluated.

Figure 1: Mechanism of plant-based synthesis of AgNPs.

Figure 2: Leaves of Cedrela toona.
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2 Materials and methods

2.1 Sample collection

Fresh leaves of Cedrela toona were gathered from the
Botanical Garden of Government College University, Lahore,
Pakistan. Silver nitrate (AgNO3), methanol (CH3OH), potas-
sium persulfate (K2S2O8), nutrient agar, DPPH (2,2-diphenyl 1
picrylhydrazyl), and ABTS {2,2′-azino-bis(3-ethylbenzothiazo-
line-6-sulfonic acid)diammonium salt}, and Luria-Bertani (LB)
medium containing agar were provided by Sigma-Aldrich
Chemical Company.

2.2 Preparation of leaf extract

The leaves were cleansed with tap water and then with
distilled water to remove grime or any contamination.
Washed leaves were then air-dried for 4 h in the room to
avoid rotting. Later, the leaves were shade-dried for 3 days
for complete drying. These leaves were milled in a grinder
mixture to form a fine powder. Then, 5 g of the fine powder
of leaves was boiled for 15 min in 100ml of distilled water.
After heating, the solution was allowed to cool to room
temperature. It was filtered utilizing Whatman filter paper
No. 1, and the filtrate was stored at 4°C in the refrigerator
for further use.

2.3 Synthesis of AgNPs

AgNPs were synthesized following the method of Saleh [25]
with slight modifications. The 10 ml leaf extract of Cedrela
toona and 90ml of 1 mM silver nitrate (AgNO3) solution
were mixed in the dark to avoid photo-oxidation. The solu-
tion was then constantly stirred on a hot plate at 200 rpm
and 70°C for 4 h in the dark. After the reaction, AgNPs were
centrifuged at 15,000 rpm for 20min and then lyophilized
to obtain the powder [26].

2.4 Optimization and characterization

The production conditions were optimized following the
method of Khane et al. [2]. The effect of different times
(30 min, 1, 2, 3, 4, and 6 h), temperatures (25°C, 50°C, 60°C,
70°C, and 80°C), plant extract concentrations (1:9, 2:8, 3:7,
4:6, and 5:5), and AgNO3 concentrations (0.5, 1, 2, 3, 4, and

5 mM) on the production of AgNPs was evaluated using UV-
vis spectroscopy. The optimum conditions were defined to
maximize the production of AgNPs. FTIR was performed
for the identification of functional groups that served as
reducing and capping agents in the biosynthesis of AgNPs.
Transmittance was measured in the range between 400
and 4,000 cm−1 at 25°C. The XRD patterns were recorded
using a single crystal X-ray diffractometer (Kappa Apex Ⅱ
Bruker, Germany) for size analysis, and they confirmed the
presence of silver. The morphology and size distribution of
AgNPs were assessed utilizing SEM and ImageJ software.

2.5 Antibacterial activity

The antibacterial activity of the biosynthesized AgNPs
against Gram-positive, i.e., Bacillus subtilis, Enterococcus
faecalis, and Staphylococcus aureus, and Gram-negative
bacteria, i.e., Pseudomonas aeruginosa, Klebsiella pneumo-
niae, Proteus mirabilis, and Escherichia coliwas done using
the agar well diffusion method. All bacterial strain suspen-
sions (1–2 × 108 CFU·ml−1) were prepared following Balouiri
et al. [27]. The experimental bacteria were swabbed on the
Petri dishes containing an autoclaved LB agar medium.
Wells were made using agar, and 50 µl of each concentra-
tion of AgNPs (50, 100, 150, and 200 µg·ml−1) was loaded in
each well. Ampicillin (200 µg·ml−1) was used as a control in
well 5. Plates were incubated for 24 h at 37°C, and the zone
of inhibitions was measured [28].

2.6 Antioxidant activity

2.6.1 DPPH assay

The ROS scavenging activity of the biosynthesized AgNPs
was determined using the DPPH (2,2-diphenyl 1 picrylhy-
drazyl) assay [29]. Different concentrations (12, 25, 50, 75,
100, 125, and 150 µg·ml−1) of AgNPs, plant extract, and
ascorbic acid were prepared, and 1 ml of each dilution
was taken in separate test tubes. In each test tube, 1 ml
of 1 mM DPPH solution was pipetted, and the test tubes
were incubated in the dark for 30min at room tempera-
ture. After 30 min, the absorbance of all samples and the
control was measured at 517 nm. A 1 mM DPPH solution
was used as the control. The following formula (Eq. 1)
was used for the calculation of the percentage inhibition
of all samples:

=
−

×
A A

A
Percentage inhibition 100

c s

c

(1)
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where Ac is the absorbance of the control and As is the
absorbance of the sample.

2.6.2 ABTS assay

The ABTS {2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic
acid)} assay was performed using the method of Re et al.
[30] with slight modifications. Potassium persulfate
(2.45 mM) (K2S2O8) was reacted with 2 mM ABTS in water
and then kept in the dark for 6 h. Then, 0.1 mM sodium
phosphate buffer was added to the solution to fix absor-
bance at 734 nm. Late, 3 ml of different concentrations (12,
25, 50, 75, 100, 125, and 150 µg·ml−1) of AgNPs, plant extract,
and ascorbic acid were reacted with 1 ml of ABTS solution.
After 30 min, the absorbance of all samples and the control
was measured at 734 nm. The following formula (Eq. 2) was
used for the calculation of the percentage inhibition of all
samples:

=
−

×
A A

A
Percentage inhibition 100

c s

c

(2)

where Ac is the absorbance of the control and As is the
absorbance of the sample.

2.7 Cytotoxic activity

The cytotoxic activity of Cedrela toona-mediated AgNPs
was determined using the MTT assay following the proto-
cols of Satyavani et al. [31] and Krishna et al. [32] with
minor changes. The MCF-7 cells were cultivated in Dul-
becco’s modified Eagle’s red medium (Sigma Life Science)
containing 10% fetal bovine serum. The cell lines were
cultivated at a density of 1.2 × 104 cells/well for 24 h at
37°C in the 96-well culture plates. After 24 h of incubation,
2 mg·ml−1 dilution of AgNPs was prepared, and from the
first well, two-fold dilution was performed from 1:1 to 1:512
with the sample ranging from 1,000 to 1.95 µg·ml−1. The
control well contained only the cell lines, while the nega-
tive control did not contain any viable cells. After 4 h of
incubation, the supernatant was removed, and 200 µg·ml−1

MTT solution (5 mg·ml−1 in phosphate buffer saline) was
added to each well and again incubated for 4 h in a 5%
CO2 incubator. The media was discarded again after 4 h of
incubation, and 100 µl of dimethyl sulfoxide (DMSO) was
added. The plate was incubated for another 15 min, and
then absorbance was recorded at 590 nm using an
enzyme-linked immunosorbent assay (ELISA) reader.

The percentage of cell viability was measured using the
following formula:

=
−

−
×

Percentage cell viability

Abs of experiment Abs of negative control

Abs of positive control Abs of negative control
100

2.8 Statistical analysis

All the analyses were performed in triplicate, and the data
are represented as mean ± standard deviation. Analyses
were conducted using Excel (2021) and OriginPro 8.5 soft-
ware. The X’pert highScore plus was used for XRD analysis,
and ImageJ software was used for size distribution ana-
lysis. A P value < 0.05 was regarded as significant.

3 Results and discussion

3.1 UV-vis spectra analysis

The biosynthesis of AgNPs was confirmed by the color
change of the reaction mixture from yellow to dark brown
after 4 h of incubation. The color change can be attributed to
the reduction of Ag+ into Ag0 in the colloidal solution of
AgNPs. The intensity of color increased with an increase in
time, indicating that more and more reduction of Ag+ was
taking place. After 4 h, the color remained stable, indicating
that maximum Ag+ had reduced. Then, the AgNP solution
was subjected to UV-visible analysis along with plant extract.
Metal nanoparticles, like AgNPs, reveal a strong absorption
of electromagnetic waves. The collective oscillations of con-
ductive electrons are stimulated when visible light is cast
upon metal nanoparticles, and hence, surface plasmon reso-
nance bands are formed [33]. UV-visible spectroscopy of the
Cedrela toona leaf extract and the reaction mixture was per-
formed to confirm the fabrication of AgNPs. No absorbance
peak was visible in the plant extract. However, a clear SPR
band at 434.98 nm affirmed the formation of AgNPs in the
reaction mixture, as shown in Figure 3. Similar results were
reported by Alahmad et al. [34], Mukaratirwa-Muchanyereyi
et al. [35], and Khan et al. [36].

3.2 Optimization

Optimization of different parameters is important to
achieve the optimum conditions required for the
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biosynthesis of Ag nanoparticles. Different parameters, i.e.,
extract concentration, AgNO3 concentration, temperature,
and time, were optimized to enhance the production of
AgNPs. In the current study, absorbance peaks were seen
to decline with increasing concentration of the Cedrela
toona extract (Figure 4a), indicating that with increasing
plant concentration, the production of AgNPs declined.
Similar results were observed by Fuloria et al. [37], where
Erythrina fusca leaf extracts were treated with 1 mM
AgNO3 in different ratios. Only 1:9 and 2:8 concentrations
showed peaks at 439 nm, and no absorption peaks were
observed for 3:7, 4:6, and 5:5 concentrations, indicating no
formation of AgNPs. Jamdagni et al. [38] used the extract
of Elettaria cardamomum and AgNO3 in different ratios
for the biosynthesis of Ag nanoparticles and observed a
sharp absorbance peak at a 1:9 concentration, which
reduced with increasing concentration of the plant

Figure 4: UV-visible spectra of optimization conditions for the production of AgNPs. (a) Different ratios of the plant extract and AgNPs, (b) different
concentrations of AgNO3, (c) varying temperature, and (d) time of incubation.

Figure 3: UV-visible spectra of the plant extract and AgNPs.
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extract. Usmani et al. [39] used the seed extract of Nigella
sativa in different concentrations (1/9, 2/8, 3/7, 4/6, and 5/5)
and treated it with 1 mM of silver nitrate to synthesize
AgNPs. Maximum absorbance was seen at a 1:9 concen-
tration with a peak at 432 nm because of high surface
plasmon resonance. Other studies conducted by Khane
et al. [2], Sarsar et al. [40], and Jha et al. [41] also concluded
that increasing plant extract concentration decreased the
sharpness of the absorption spectrum, indicating a decline
in the production of AgNPs. Therefore, the concentration
(1:9) with a maximum absorbance peak was selected as sui-
table for further optimization.

The molar concentration of silver nitrate was opti-
mized by preparing silver nitrate in varying concentra-
tions (0.5, 1, 2, 3, 4, and 5 mM) and mixing them with the
leaf extract in 1:9 concentration. After incubation of 4 h at
70°C, the color change was seen in all the reaction mix-
tures. The absorbance increased from 0.5 to 1 mM AgNO3

concentration but above 1 mM; it started to decline slightly
(Figure 4b) because, at low substrate concentration, size
reduction takes place quickly due to excess availability of
functional groups, i.e., hydroxyl groups, germinal methyl,
amine, and polypeptides in the leaf extract. However,
when the substrate concentration is increased from 1 to
5 mM, the particles start to aggregate and form large
masses because of the competition between functional
groups and silver ions [42]. Similar results were obtained
by Vanaja et al. [43], who used the leaf extract of Coleus
aromaticus for the production of AgNPs. Out of five con-
centrations (1, 2, 3, 4, and 5 mM), 1 mM AgNO3 concentra-
tion gave the maximum absorbance, and increasing the
substrate concentration above that caused a gradual
decrease in absorbance. Abambagade and Belete [44]
used different AgNO3 concentrations from 0.25 mM up
to 1.25 mM, and absorbance increased with increasing
substrate concentration. However, after 1 mM concentra-
tion, the SPR band shifted to a higher wavelength, sug-
gesting the aggregation of synthesized AgNPs. Response
surface methodology adopted by Chowdhury et al. [45]
also suggested that a 1 mM concentration of AgNO3 was
best for the maximum production of AgNPs. Another
study conducted by Singh et al. [46] concluded that
increasing the substrate concentration above 1mM caused
the aggregation of AgNPs. Other experiments performed on
leaf extracts also concluded that 1 mM AgNO3 was pre-emi-
nent for the production of AgNPs [47–49].

Temperature is another important variable that needs
to be optimized because the reaction kinetic of AgNP pro-
duction is controlled by it [50]. The influence of tempera-
ture on the fabrication of AgNPs was evaluated by using
varying temperatures, i.e., 25°C, 50°C, 60°C, 70°C, and 80°C,

without varying the other constants. Color change of reac-
tion mixtures was rapid at a higher temperature because
high temperature fastens the reduction of silver nitrate, as
observed by Seifipour et al. [51]. Also, the intensity of color
is enhanced by increasing temperature. Moreover, a hyp-
sochromic shift (shift of absorbance to shorter wavelength)
was also seen in the absorption peaks with increasing tem-
perature (Figure 4c). A similar blue shift or hypsochromic
shift was seen by Ramesh et al. [52] while increasing the
incubation temperature from 25°C to 90°C for the produc-
tion of AgNPs from the leaf extract of Ficus hispida Linn. At
room temperature and 40°C, no absorption peaks were
visible. However, from 50°C to 80°C, the absorption peak
increased with maximum absorbance at 80°C. No color
change was observed between the reaction mixture incu-
bated at 70°C and 80°C, and a very slight peak difference
was evident, suggesting that after 70°C, there was no sig-
nificant increase in the reaction, and the reaction mixture
moved to stabilization. Hence, 70°C could be considered as
the optimum temperature for the biosynthesis of Ag nano-
particles from the Cedrela toona extract. An analogous
phenomenon was observed by Ismail et al. [53] while pro-
ducing AgNPs from the fruit extracts of Durenta erecta. An
increase in temperature from 30°C to 70°C elevated the rate
of reaction and formation of AgNPs, but between 70°C and
80°C, no further increase was evident, which could be
attributed to the complete bioreduction of silver into
AgNPs, and absorbance peaks were formed very close to
each other. Dada et al. [50] also found that the rate of
synthesis of AgNPs from the extract of Acalypha wilk-
esiana increased with the increase of reaction tempera-
ture from 30°C to 100°C. In an attempt to produce AgNPs
from the leaf extract of F. latisecta, Mohammadi et al. [54]
inferred that the largest growth rates were achieved at
70°C. Aslam et al. [55] also evaluated different tempera-
tures for the synthesis of AgNPs from Sanvitalia procum-
bens and found that 70°C temperature was most suitable.
Other studies also found that 70°C was the optimum tem-
perature [56–58].

Incubation time is a crucial criterion that needs to be
controlled to optimize the size and stability of Ag nanopar-
ticles. All the reaction mixtures were incubated at different
intervals of time (30 min, 1, 2, 3, 4, and 6 h) and then sub-
jected to UV-visible spectroscopy. By increasing the time of
incubation, the hyperchromic effect was seen (Figure 4d),
suggesting an increase in the number of AgNPs [59]. After
4 h of incubation, no change in color and closeness of 4 and
6 h SPR bands indicated that AgNPs had moved toward
stabilization because of the stabilization agents present
in the plant extract [60]. An increase in the intensity of
the SPR band was also reported by Hashem et al. [61] while
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producing AgNPs from Ferula persica. After the maximum
absorbance at 1 h incubation time, the reaction moved
toward stabilization, and no further increase in the SPR
band was seen after increasing the time interval. Loges-
wari et al. [62] noticed the increase in absorbance by
increasing the time intervals while producing AgNPs from
five different plant extracts, i.e., C. sinensis, S. tricobatum, O.
tenuiflorum, C. asiatica, and S. cumini. Kumar et al. [63]

noticed that enhancing the incubation time from 1 to 4 h
increased the reduction of silver ions from the Annona squa-
mosa extract, hence increasing the intensity of color. Synth-
esis of AgNPs was completed after 4 h, and no further color
change was evident in the mixture. Similar patterns of SPR
bands were also observed when extracts were used for the
bioproduction of AgNPs [64–66]. Moreover, the 4 h of
incubation time gave maximum absorbance peaks when
extracts of Hippophae rhamnoides, Berberis asiatica, Gano-
derma lucidum, Protium serratum, and Avena sativa were
used for the production of AgNPs [67–71]. Keeping in view
all the above, the maximum production of AgNPs could be
attained by mixing the Cedrela toona leaf extract with the
1mM AgNO3 in 1:9 concentration at 70°C for 4 h.

3.3 FTIR analysis

FTIR analysis of both leaf extract of Cedrela toona and
synthesized AgNPs was carried out to find the involvement
of functional groups (Figure 5). All the peaks and their
corresponding functional groups are listed in Table 1. In
the FTIR spectrum of the plant extract, the broad peak at
3,316 cm−1 indicated the N–H and O–H stretching vibration
of amides [72–74]. The sharp peak at 1,633 cm−1 could be
assigned to the bending vibration of the carbonyl group ofFigure 5: FTIR spectra of AgNPs and the plant extract.

Table 1: Assignment of main FTIR peaks of the Cedrela toona leaf extract and synthesized AgNPs

Sample Wavelength (cm−1) Bond/stretching Functional groups

Aqueous leaf
extract

3,316.11 N–H and O–H stretching Amides
1,633.50 −C]O stretching Alkenes, carboxylic acids, phenols, tertiary amides, steroids,

flavonoids, and aromatic compounds
614.57 P–O–C and C–O–O

bonding
Aromatic compounds

AgNPs 3,372.89 N–H stretching Primary amines
Hydroxyl/C]O stretching Phenols, alcohols, triterpenoids, and flavonoids

3,274.68 O–H stretching Phenols and alcohols
N–H stretching Amines

1,618.15 −C]C− stretching Aromatic compounds
−COO− or the C]O
stretching

Phenols or flavonoids

1,530.69 N–H Secondary amines
1,401.73 C–C or C]C stretching Alkanes or benzene
1,253.81 C–N stretching Amides

C–O stretching Esters
1,077.03 −C–O− or −C–O–C−

stretching
Ethers, esters, carboxylic acids, and alcohols, especially terpenoids or
flavanones

C–N stretching Amines
599.23 C–C–C–N bonding Nitrites

C–H stretching Cellulose
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alkenes [75], carboxylic acids, phenols [76], tertiary amides
[77], steroids, flavonoids [78], aromatic compounds [79], or
the presence of amide Ⅰ group of proteins [80] and band at
614 cm−1 was conferred to the P–O–C and C–O–O bonding
of aromatic phosphates [81].

In the FTIR spectrum of AgNPs, the broad peak at
3,372 cm−1 was assigned to the stretching vibrations of pri-
mary amines [82] or the hydroxyl/C]O group of carboxylic
acids referring to the presence of phenols, alcohols [83],
triterpenoids, and flavonoids [84]. The band at 3,274 cm−1

was attributed to the O–H bond stretching of phenols and
alcohols [85] or the amines’ N–H stretching, which are
absorbed by AgNPs and are cited in the literature for their
ability to reduce silver ions [86]. The peak at 1,618 cm−1

could be attributed to the −C]C− stretching of aromatic
compounds [87,88], the stretching vibrations of the carbox-
ylate anion group (COO) [89], or the C]O stretches of phe-
nols and flavonoids [90]. The peak at 1,530 cm−1 referred to
bonding and stretching vibrations of secondary amines
[91], indicating the presence of proteins [92], while the
small peak at 1,401 cm−1 corresponded to the C–C or C]C
stretches of alkanes or benzene [93,94]. The band at
1,253 cm−1 was assigned to the C–N stretching vibrations
of the amide group [95,96], indicating the presence of
proteins [97] or the C–O stretches of ester [13]. The peak
at 1,077 cm−1 was assigned to the −C–O− or –C–O–C−
stretching vibrations of ethers, esters, carboxylic acids,
and alcohols [98,99], especially the ether linkages of ter-
penoids or flavanones on surfaces of AgNPs [100], or C–N
stretching of amines [101,102] and the broad peak at

599 cm−1 was assigned the C–C–C–N of nitrites [103] or
C–H stretching vibrations of cellulose [104].

3.4 XRD analysis

XRD analysis of powdered AgNPs was done to confirm the
presence of AgNPs and to know about the structural infor-
mation of particles. Figure 6 shows the XRD pattern of
AgNPs. Clear peaks at (2θ) 37.92, 45.33, 63.65, and 77.47
corresponding to (111), (200), (220), and (311) planes can
be seen in the XRD pattern, which indicated the face-cen-
tered, cubic, and crystalline nature of AgNPs [105–107]. The
size of the crystallites was found using the Debye–Scher-
rers’ equation (Eq. 3). The mean size of particles was found
to be 25.9 nm.

=D
K

β θ

λ

cos
(3)

where D is the crystallite size (nm), K (= 0.9) is the Scherrer
constant, λ (= 0.15406 nm) is the wavelength of X-ray
sources, β is the FWHM (rad), and θ is the peak posi-
tion (rad).

3.5 SEM analysis

SEM analysis reveals the morphology and size distribution
of AgNPs (Figure 7a–c). The images show that AgNPs have

Figure 6: XRD pattern of AgNPs synthesized using the leaf extract of Cedrela toona (numbers show the face-centered cubic planes of AgNPs).
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spherical shapes, which corroborates with other findings
[108,109]. The nanoparticles ranged in size between 22 and
30 nm, as depicted by the histogram (Figure 7d), with a mean
average size of 25.5 nm. SEM results correlate with XRD size
analysis. While producing AgNPs from the plant, several stu-
dies have reported a similar size distribution [110,111].

3.6 Antibacterial potential

The antibacterial activity of the AgNPs was tested against E.
coli, P. aeruginosa, B. subtilis, and S. aureus (Figure 8).
AgNPs synthesized using the Cedrela toona extract exhib-
ited potent antibacterial activity against both Gram-posi-
tive and Gram-negative bacteria. The maximum antibac-
terial activity is seen against P. mirabilis (23 ± 0.5 mm), as
shown in Table 2, because of its Gram-negative nature. The
Gram-negative bacteria are more susceptible to AgNPs
because of the scarcity of peptidoglycan layer enabling
the serene entry of AgNPs [112]. Moreover, the AgNPs
also release silver ions, which can pass through porins
on the cell wall and could cause disruption in DNA replica-
tion [113]. E. faecalis produced a wider zone of inhibition
compared to P. aeruginosa,which agrees with the results of
Jeevitha and Rajeshkumar [114] when AgNPs synthesized
from Spatoglossum asperum were used. Larger zones were
seen when AgNPs were used against S. aureus compared to
E. coli, which corroborates with the findings of Raut et al.
[115] and Shahverdi et al. [116], who attributed the antibac-
terial activity to DNA disruption, ROS generation, direct
damage to cell membranes, or loss of permeability [117].
The diameter of zones was found to be largest against P.
mirabilis, followed by E. faecalis (21 ± 0.5 mm), B. subtilis
(20 ± 0.9 mm), P. aeruginosa (18 ± 0.3 mm), S. aureus (16 ±

0.7 mm), K. pneumoniae (16 ± 0.3 mm), and E. coli (14 ±

0.7 mm). The exact mechanisms of antibacterial activity
are still a mystery to the scientific world. Perhaps, the
release of Ag+ ions, which may interact with nucleic acids
or specifically nucleosides of nucleic acids [118] or may
adhere to the cell wall or cytoplasm because of their affi-
nity toward sulfur proteins [119], could be the possible
reasons for antibacterial activity. As a result, the function-
ality of respiratory enzymes is shut down, causing an inter-
ruption in ATP and the production of ROS [120]. Moreover,
protein synthesis can easily be halted by denaturation of
ribosomal components by silver ions [121]. In addition,
AgNPs themselves can also inhibit bacterial growth [122].
Their small size eases their entry through the bacterial cell
wall, which then induces cell membrane disruption, orga-
nelles rupture, and even cell lysis. AgNPs can also depho-
sphorylate the tyrosine residuals, disrupting the signal

Figure 7: SEM analysis of AgNPs synthesized using the Cedrela toona leaf
extract: (a) 100× magnification, (b) 6,530× magnification, (c) 10,000×
magnification, and (d) particle size distribution histogram of AgNPs.
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transduction pathway leading to cell apoptosis and halting
cell division [123].

3.7 Antioxidant activity

3.7.1 DPPH activity

DPPH scavenging assay is one of the most frequently used
antioxidant assays in this research work. DPPH˙ is the free

radical that is purple in color and gives absorbance at
517 nm. Hydrogen donors reduce DPPH˙ to DPPH form
(hydrazine form), and its color changes from purple to
pale yellow, and the extent of color depends on the number
of antioxidants used [124]. In the current study, the anti-
oxidant activity of the plant extract and synthesized AgNPs
is compared with ascorbic acid, which is used as a stan-
dard. A dose-dependent behavior can be seen (Table 3,
Figure 9) for all three samples, where increasing the con-
centration increases the antioxidant activity. However, the

Figure 8: Agar well diffusion assay against (a) Staphylococcus aureus, (b) Bacillus subtilis, (c) Escherichia coli, (d) Pseudomonas aeruginosa, (e) Klebsiella
pneumoniae, (f) Enterococcus faecalis, and (g) Proteus mirabilis, where 1 (50 µg·ml−1), 2 (100 µg·ml−1), 3 (150 µg·ml−1), 4 (200 µg·ml−1), and 5 (200 µg·ml−1

of control).

Table 2: Diameter of zone of inhibitions for AgNPs with different bacterial strains and control drug, i.e., ampicillin

Diameter of zone of inhibitions (mm) (Mean ± SD) for different doses (µg·ml−1) of AgNPs

Bacterial strain Control 50 100 150 200

B. subtilis — 17 ± 0.3 18 ± 0.3 19 ± 0.7 20 ± 0.9
S. aureus — 12 ± 0.4 13 ± 0.3 13 ± 0.9 16 ± 0.7
P. aeruginosa — 14 ± 0.4 15 ± 0.2 15 ± 0.9 18 ± 0.3
E. coli — 9 ± 0.4 11 ± 0.6 13 ± 0.3 14 ± 0.7
K. pneumoniae 14 ± 0.2 13 ± 0.2 14 ± 0.1 14 ± 0.8 16 ± 0.3
E. faecalis 7 ± 0.2 15 ± 0.7 16 ± 0.2 17 ± 0.3 21 ± 0.5
P. mirabilis 19 ± 0.2 16 ± 0.3 18 ± 0.9 19 ± 0.2 23 ± 0.5

A P value < 0.05 was regarded as significant.
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antioxidant activity of AgNPs was found to be higher than
the plant extract and lower than the standard. The max-
imum inhibition by AgNPs (68.72%), ascorbic acid (80.44%),
and extract (55.09%) was shown at a concentration of

150 µg·ml−1. The half-maximal inhibitory concentration (IC50)
for AgNPs was found at 69.62 µg·ml−1, while those for the
plant extract and standard were 149.47 and 32.81 µg·ml−1.
Similar results were reported when plant extracts of With-
ania coagulans, Arum italicum, Grewia optiva, Citrus lemon,
Justicia gendarussa, Tropaeolum majus, Pyrus betulifolia, and
Allium ampeloprasum and AgNPs synthesized from them
were checked for their antioxidant activities [125–132]. The
higher antioxidant activity of AgNPs can be attributed to
the functional groups (alcohols, phenols, flavonoids, terpe-
noids) present in the Cedrela toona extract that served as
reducing and capping agents and became part of the AgNPs
[133,134].

3.7.2 ABTS assay

In the current study, the antioxidant activities of the plant
extract and AgNPs are also compared using the ABTS assay
while using ascorbic acid as standard. A dose-dependent
behavior could be seen (Table 4, Figure 10) for all three
samples, just like the DPPH assay. The maximum inhibition
by AgNPs (77.63%), ascorbic acid (89.81%), and extract

Table 3: DPPH radical scavenging activity of the Cedrela toona extract,
synthesized AgNPs, and ascorbic acid

Samples Concentrations
(µg·ml−1)

Scavenging
activity (%)

Plant extract 12.5 9.56 ± 1.33
25 12.82 ± 1.02
50 19.60 ± 1.87
75 26.92 ± 1.32
100 38.32 ± 2.76
125 45.68 ± 0.84
150 55.09 ± 2.37
IC50 149.47 ± 0.15

Synthesized
AgNPs

12.5 28.32 ± 1.34
25 32.82 ± 1.06
50 40.37 ± 0.93
75 45.97 ± 1.39
100 57.14 ± 1.51
125 61.87 ± 1.32
150 68.72 ± 1.21
IC50 69.62 ± 0.09

Ascorbic acid 12.5 30.28 ± 1.34
25 43.74 ± 1.16
50 51.56 ± 1.73
75 59.08 ± 1.83
100 65.31 ± 2.03
125 72.93 ± 0.99
150 80.44 ± 1.94
IC50 32.81 ± 0.08

Figure 9: DPPH radical scavenging activity of the Cedrela toona extract
AgNPs and ascorbic acid. A P value < 0.05 was regarded as significant.

Table 4: ABTS radical scavenging activity of the Cedrela toona extract,
synthesized AgNPs, and ascorbic acid

Samples Concentrations
(µg·ml−1)

Scavenging
activity (%)

Plant extract 12.5 14.91 ± 1.29
25 17.12 ± 1.50
50 26.60 ± 1.69
75 32.68 ± 1.23
100 43.95 ± 1.11
125 55.53 ± 1.95
150 63.97 ± 1.84
IC50 120.45 ± 0.24

Synthesized
AgNPs

12.5 32.51 ± 1.34
25 34.81 ± 1.73
50 45.02 ± 1.38
75 53.01 ± 1.61
100 60.18 ± 1.23
125 69.05 ± 1.04
150 77.63 ± 1.08
IC50 47.09 ± 0.13

Ascorbic acid 12.5 44.48 ± 1.67
25 48.97 ± 1.13
50 54.91 ± 0.62
75 65.19 ± 1.23
100 72.34 ± 1.27
125 82.52 ± 1.50
150 89.91 ± 1.65
IC50 30.25 ± 0.15
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(63.97%) was shown at a concentration of 150 µg·ml−1. The
IC50 for AgNPs was found at 47.90 µg·ml−1, while those
for the plant extract and standard were 120.45 and
30.30 µg·ml−1. Similar results were reported when the
extracts of Cannabis sativa, Astragalus flavesces, and Ori-
ganum majorana were used for the production of AgNPs
and assessed for antioxidant activity [135–137].

3.8 Cytotoxic activity

When the MTT assay was performed against MCF-7 cells
using various concentrations of AgNPs, a dose-dependent
behavior was seen, as depicted in Figure 11. The percentage
cell viability was calculated using the formula, and the
graph was constructed against concentrations of AgNPs.
Only 4.57% of cells were viable at the 1,000 µg·ml−1 AgNP
concentration and with decreasing AgNP concentration,
cell viability enhanced. The IC50 was also calculated using
Origin95 software, and was found to be 32.55 ± 0.05 µg·ml−1.

AgNPs have an advantage over other anticancer thera-
pies like chemotherapy in that they are only toxic to can-
cerous cells compared to normal cells, and this toxicity can
be attributed to the presence of secondary metabolites
[138–140]. For instance, when the leaf extract of Ziziphus
nummularia was used to produce Ag nanoparticles, the
presence of secondary metabolites like glycosides, sapo-
nins, alkaloids, and essential oils contributed to the anti-
neoplastic activity against Hela cell lines [141,142]. When
the extract of Hypericum perforatum was used to produce
Ag nanoparticles and their activity was tested against A549,

Hep G2, and Hela cells, the phenolic compounds that acted
as capping agents were found responsible for antineo-
plastic behavior [143]. Apart from phenolic compounds,
the flavonoids and tannins can also support the anticancer
behavior of Carica papaya-mediated AgNPs against Hep-2
and MCF-7 cells [144]. In the case of banana leaf extract-
mediated AgNP synthesis, the antitumor behavior against
MCF-7 and A549 cells was ascribed to ROS inflammation,
resulting in the dysfunction of physiological processes and,
ultimately, cell death [145]. ROS activate caspase 3 was
released when AgNPs synthesized from Magnifera indica
were used against MCF-7 and Hela cell lines. It stimulated
DNA fragmentation, causing membrane leakage and, ulti-
mately, cell death [146].

MTT assay is usually employed to test the cytotoxic
potential of AgNPs. The cell lines are incubated for 4 h in
the 96-well culture plates to allow them to grow well. After
their growth, they are reacted with various concentrations
of AgNPs for 4 h. AgNPs react with the cell lines, causing
inhibition of cell viability. Then, the MTT dye is added with
which the dehydrogenase enzymes of metabolically active
cells react. These enzymes reduce the MTT and form
purple formazan crystals, which are insoluble in the cell
culture medium. Then, DMSO is added, which dissolves
and solubilizes these formazan crystals. The more viable
cells are present in the culture medium, the more they will
produce the purple color and vice versa. Then, the color
change is observed using a ELISA reader, which gives the
values of this calorimetric assay [147]. In our study, 78.19%
cell mortality was seen when 500 µg·ml−1 AgNP concentra-
tion was used, and cell mortality increased with increasing

Figure 10: ABTS radical scavenging activity of the Cedrela toona extract,
AgNPs, and ascorbic acid. A P value < 0.05 was regarded as significant.

Figure 11: Percentage cell viability of MCF-7 cells against Cedrela toona-
mediated AgNPs at various concentrations. A P value < 0.05 was
regarded as significant.
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concentration of AgNPs, suggesting their cytotoxic role.
Similar dose-dependent behavior was seen in other studies
performed [148,149]. These findings suggest that the Ag
nanoparticles synthesized using the Cedrela toona leaf
extract could potentially be used for the production of
anticancer drugs.

4 Conclusions

AgNPs have gained much attention for their biomedical
applications in antibacterial, antioxidant, and antineo-
plastic drugs. Moreover, plants have emerged as a poten-
tial source of AgNPs because plant-mediated production
does not involve the use of hazardous chemicals and
does not require long incubation periods. Cedrela toona
is a medicinal plant used for dysentery, rheumatism, and
astringent drugs. The leaf extract from this plant is used as
a capping agent, and AgNPs are produced from it. The
optimized conditions were found to enhance the produc-
tion of AgNPs. Furthermore, biofunctional groups like
ethers, esters, carboxylic acids, and alcohols, especially
terpenoids, flavanones, alkenes, and amines, were found
to be responsible for the reduction of silver to AgNPs. Agar
well diffusion assay was performed, and AgNPs were found
to be effective against all bacterial strains. Moreover,
higher antioxidant activity was reported in AgNPs juxta-
posed to the plant extract, suggesting that AgNPs have
more ROS scavenging activity. Furthermore, cytotoxic activity
was evaluated against MCF-7 cell lines, and Ag nanoparticles
were found to have good cytotoxic activity against cancerous
cells. The crux of this research is that AgNPs synthesized from
the leaf extract of Cedrela toona possessed good antibacterial
activity against S. aureus, P. aeruginosa B. subtilis, P. mirabilis,
E. faecalis, K. pneumoniae, and E. coli,which emphasized their
future role as an antibacterial drug. Moreover, the antioxi-
dant activity of AgNPs with DPPH IC50 of 69.62 µg·ml−1 and
ABTS IC50 of 47.90 µg·ml−1 made them more effective against
ROS species compared to the plant extract, indicating their
role in antioxidant drugs. Their potential extends beyond
antibacterial and antioxidant properties to the anticancer
as well. The synthesized AgNPs showed significant anticancer
activity, which shows that they have the potential to be used
as anticancer drugs as well.
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